Skip to content

AAT D2

Description

Modifier une solution déjà conçue et documentée pour l'adapter à des spécifications techniques différentes.

Progression

  • M1 (S4): L’élève est capable d’identifier et d’expliquer une solution donnée et l’adapter pour la faire fonctionner.

  • M2 (S7): L’élève est capable d’identifier, d’expliquer et d’enrichir une solution donnée pour l'adapter à des spécifications techniques différentes.

Liste des AAv (99)

  • 01_XDCAO-AAv1 (15H): L’étudiant saura modéliser une pièce à l’aide d’un logiciel de CAO mécanique.

  • 01_XDCAO-AAv2 (10.5H): L’étudiant saura modéliser un assemblage à l’aide d’un logiciel de CAO mécanique.

  • 01_XDCAO-AAv5 (18H): L'étudiant saura réaliser une pièce ou un assemblage physique en utilisant un ou plusieurs moyens de prototypage rapide de la Forge (imprimante 3D FDM ou résine, découpeuse laser).

  • 02_XSZG2-AAv7 (20H): A l'issue de la ZG2, le groupe d'étudiants sera capable de construire à partir de briques élémentaires un système (technologies composants discrets et microprogrammé) dans le domaine de l'acquisition de mesure, à partir d'un cahier des charges, de le mettre en œuvre et de le tester.

  • 02_XCELE-AAv1 (20H): A l’issue du 2e semestre, l’étudiant sera capable d'adapter les valeurs de composants d'un circuit du 1er ordre pour réaliser une fonction électronique standard et parfaitement décrite (cahier des charges). L'étudiant évaluera systématiquement sa proposition par une étude en simulation à l'aide du logiciel LTSpice.

  • 02_XCELE-AAv4 (10H): A l’issue du 2e semestre, l’étudiant sera capable d'évaluer le coût de la consommation énergétique d'une installation électrique industrielle et de dimensionner les éléments à y rajouter pour ne pas subir de pénalités par le fournisseur d'énergie.

  • 02_XCELE-AAv5 (26H): A l'issue du semestre S2, l'étudiant sera capable de caractériser expérimentalement un système en utilisant les protocoles de mesure adéquats. Il présentera ses résultats sous la forme d'une synthèse comprenant des courbes légendées et exploitées. Les valeurs caractéristiques du système seront données avec des unités cohérentes et discutées au regard de celles attendues.

  • 02_XDIPI-AAv1 (20H): Un étudiant de S2, à la fin de IPI, est capable de mettre en oeuvre les grandes étapes d'un cycle de développement d'une trentaine d'heures, d'un logiciel interactif (par exemple un jeu) structuré par une boucle de simulation et des types abstraits de données dans le paradigme de la programmation procédurale, avec l'aide d'un superviseur qui valide ou propose les grandes lignes de chacune des étapes de ce cycle. Ces étapes sont :

  • 03_XCCIN-AAv2 (42H): À l’issue de ce cours, l’étudiant sera capable d’utiliser une fiche technique d’un circuit séquentiel, de décrire son comportement fonctionnel et distinguer les blocs synchrones et asynchrones, afin de permettre son intégration dans un système numérique. Il maîtrisera les méthodes d’analyse et de conception de fonctions de mémorisation, de comptage et de décalage. Il sera capable de concevoir une machine à états simple conformément à un cahier des charges.

  • 03_XDAUT-AAv5 (16H): A partir d’une partie opérative pilotée par un automate avec un programme existant, l'équipe d’étudiant doit être capable de proposer une supervision fonctionnelle:

  • 04_XBPRG-AAv2 (14H): : À l'issue de cet enseignement, les étudiants du quatrième semestre seront capables d'utiliser les principaux types courants du langage Rust (arithmétiques ou élaborés).

  • 04_XSZG4-AAv4 (20H): Concevoir et prototyper des composants de la maquette de mesure :

  • 04_XCPRC-AAv2 (40H): A l'issue du semestre, l'étudiant est capable d'écrire un programme en langage C mettant en œuvre des fonctions, variables dont pointeurs, structures de contrôle.

  • 04_XCPRC-AAv3 (9H): A l'issue du semestre, l'étudiant de S4 est capable d'écrire un programme qui manipule les registres des périphériques visibles dans l'espace adressable d'un microcontrôleur et d'effectuer des opérations de masquage.

  • 05_XCOBJ-AAv1 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation et dans un cadre d’exercices guidés, les concepts de base de la programmation orientée objet :

  • 05_XCOBJ-AAv2 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation et dans le cadre d'exercices guidés les concepts de collaborations de la programmation orientée objet :

  • 05_XCOBJ-AAv3 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation les concepts suivants de la programmation orientée objet, dans le cadre d'exercices guidés :

  • 05_XCOBJ-AAv4 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de réaliser un diagramme de classes UML qui modélise un problème explicité (décrit en détail ou déjà implémenté) faisant intervenir les principales notions de la programmation orientée objet, dans le cadre d'exercices guidés.

  • 05_XCOBJ-AAv7 (12H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de réaliser un programme qui respecte des bonnes pratique et met en œuvre les principaux concepts de la programmation orientée objet, dans le cadre d'exercices guidés.

  • 05_XCMIP-AAv1 (36H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura développer d'abord le modèle d'un microprocesseur élémentaire, en langage vhdl, puis un programme, dans le langage assembleur de ce microprocesseur,dont l'architecture globale aura été préalablement expliquée et fournie sous la forme d'un ensemble de blocs fonctionnels interconnectés, à modéliser chacun en VHDL, et à laquelle est associé un simulateur d'instructions assembleur, fourni et expliqué, puis vérifiera, par simulation de l'architecture pour certains cycles d'exécution pertinents du programme assembleur développé, que le contenu des registres et de la mémoire est conforme aux valeurs attendues.

  • 05_XCMIP-AAv2 (30H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura composer et tester un programme, écrit en langage assembleur ARM seul ou mixant langage assembleur et langage C, en utilisant des outils de développement, pour la compilation et la visualisation des registres et du contenu de la mémoire, en respectant le standard AAPCS, afin d’exécuter un programme de calcul ou de traitement de chaînes de caractères sur un microcontrôleur STM32.

  • 05_XCMIP-AAv3 (33H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura faire interagir un microcrontrôleur STM32 avec des leds, des boutons poussoirs et un signal de demande d'interruption extérieur au microcontrôleur

  • 05_XECAO-AAv1 (20H): L’étudiant saura modéliser une pièce à l’aide d’un logiciel de CAO mécanique.

  • 05_XECAO-AAv2 (10H): L’étudiant saura modéliser un assemblage à l’aide d’un logiciel de CAO mécanique.

  • 06_XCCPO-AAv1 (20H): A la fin de l’enseignement, les étudiants seront capables de comprendre les concepts de la programmation orientée objet. En particulier, les étudiants seront capables d’expliquer les concepts d’héritage, d’interface, de liaison dynamique et liaison statique, polymorphisme objet et paramétrique, méthodes statiques.

  • 06_XCCPO-AAv2 (8H): A la fin de l’enseignement, les étudiants seront capables d’appliquer les concepts de programmation orientée objet. En particulier, les étudiants seront capables de choisir et d’utiliser les concepts d’héritage, d’interface, de liaison dynamique et liaison statique, polymorphisme objet et paramétrique, méthodes statiques.

  • 06_XCMIP-AAv4 (24H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, sera capable d'utiliser un timer pour contrôler une temporisation ou la période d'interruptions périodiques ou générer un signal à modulation de largeur d'impulsion, modifier son rapport cyclique et l'appliquer à une broche physique du microcontrôleur STM32, en utilisant, dans un cadre guidé, l'interface de registres du timer, puis en complétant une API d'encapsulation des fonctionnalités du timer, écrite en langage C, pour obtenir une durée ou un signal PWM conforme à celui attendu.

  • 06_XCMIP-AAv5 (36H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura faire communiquer par liaison série, RS232, I2C ou SPI, un microcrontrôleur STM32 avec un système numérique extérieur en développant une API simple (RS232) ou en utilisant une API simple, fournie et connue, (I2C, SPI), écrite en langage C, permettant l'émission et la réception d'un ensemble d'octets afin d'une part d'émettre et de recevoir des chaînes de caractères ASCII sans erreur et sans perte depuis et vers un terminal (RS232) et d'autre part de générer des trames I2C ou SPI, compatibles avec le circuit numérique adressé, dans le but de le configurer et de lire ou d'écrire des données.

  • 06_XCMIP-AAv6 (15H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura utiliser un mode d'économie d'énergie d'un microcrontrôleur STM32 et saura faire communiquer un périphérique directement avec la mémoire (DMA), par la configuration de registres dédiés à la gestion de l'énergie et en mettant en œuvre, dans un cadre guidé, un périphérique DMA du microcontrôleur STM32 afin de mettre en sommeil le processeur lors de ses périodes d'inactivité et d’échanger des données sans intervention du processeur.

  • 06_XDSIG-AAv6 (22H): A la fin du semestre, l’étudiant doit être capable d’implémenter ces techniques de base du traitement numérique du signal dans un langage interprété de type python, matlab ou octave, et les implanter sur une cible matérielle (unité de traitement numérique). L’étudiant aura consulté et assimilé les ressources scientifiques nécessaires afin de répondre au travail à réaliser.

  • 06_XCCPO-AAv1 (20H): A la fin de l’enseignement, les étudiants seront capables de comprendre les concepts de la programmation orientée objet. En particulier, les étudiants seront capables d’expliquer les concepts d’héritage, d’interface, de liaison dynamique et liaison statique, polymorphisme objet et paramétrique, méthodes statiques.

  • 06_XCCPO-AAv2 (8H): A la fin de l’enseignement, les étudiants seront capables d’appliquer les concepts de programmation orientée objet. En particulier, les étudiants seront capables de choisir et d’utiliser les concepts d’héritage, d’interface, de liaison dynamique et liaison statique, polymorphisme objet et paramétrique, méthodes statiques.

  • 06_XCMIP-AAv4 (24H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, sera capable d'utiliser un timer pour contrôler une temporisation ou la période d'interruptions périodiques ou générer un signal à modulation de largeur d'impulsion, modifier son rapport cyclique et l'appliquer à une broche physique du microcontrôleur STM32, en utilisant, dans un cadre guidé, l'interface de registres du timer, puis en complétant une API d'encapsulation des fonctionnalités du timer, écrite en langage C, pour obtenir une durée ou un signal PWM conforme à celui attendu.

  • 06_XCMIP-AAv5 (36H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura faire communiquer par liaison série, RS232, I2C ou SPI, un microcrontrôleur STM32 avec un système numérique extérieur en développant une API simple (RS232) ou en utilisant une API simple, fournie et connue, (I2C, SPI), écrite en langage C, permettant l'émission et la réception d'un ensemble d'octets afin d'une part d'émettre et de recevoir des chaînes de caractères ASCII sans erreur et sans perte depuis et vers un terminal (RS232) et d'autre part de générer des trames I2C ou SPI, compatibles avec le circuit numérique adressé, dans le but de le configurer et de lire ou d'écrire des données.

  • 06_XCMIP-AAv6 (15H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura utiliser un mode d'économie d'énergie d'un microcrontrôleur STM32 et saura faire communiquer un périphérique directement avec la mémoire (DMA), par la configuration de registres dédiés à la gestion de l'énergie et en mettant en œuvre, dans un cadre guidé, un périphérique DMA du microcontrôleur STM32 afin de mettre en sommeil le processeur lors de ses périodes d'inactivité et d’échanger des données sans intervention du processeur.

  • 06_XDSIG-AAv6 (22H): A la fin du semestre, l’étudiant doit être capable d’implémenter ces techniques de base du traitement numérique du signal dans un langage interprété de type python, matlab ou octave, et les implanter sur une cible matérielle (unité de traitement numérique). L’étudiant aura consulté et assimilé les ressources scientifiques nécessaires afin de répondre au travail à réaliser.

  • 05AOCEDM-AAv7 (11H): L’étudiant saura modéliser une pièce à l’aide d’un logiciel de CAO mécanique.

  • 05AOCEDM-AAv8 (5H): L’étudiant saura modéliser un assemblage à l’aide d’un logiciel de CAO mécanique.

  • 05AODOBJ-AAv1 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation et dans un cadre d’exercices guidés, les concepts de base de la programmation orientée objet :

  • 05AODOBJ-AAv2 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation et dans le cadre d'exercices guidés les concepts de collaborations de la programmation orientée objet :

  • 05AODOBJ-AAv3 (20H): À l'issue du cours OBJ, un étudiant du cinquième semestre sera capable de manipuler dans un langage de programmation les concepts suivants de la programmation orientée objet, dans le cadre d'exercices guidés :

  • 05AODOBJ-AAv4 (20H): À l'issue du cours UML, un étudiant du cinquième semestre sera capable de réaliser un diagramme de classes UML qui modélise un problème explicité (décrit en détail ou déjà implémenté) faisant intervenir les principales notions de la programmation orientée objet, dans le cadre d'exercices guidés.

  • 05AODOBJ-AAv7 (12H): À l'issue du cours UML, un étudiant du cinquième semestre sera capable de réaliser un programme qui respecte des bonnes pratique et met en œuvre les principaux concepts de la programmation orientée objet, dans le cadre d'exercices guidés.

  • 05AODPRC-AAv6 (14H): : A l’issue du cours de programmation, un étudiant du cinquième semestre seront capables d'utiliser les principaux types courants (arithmétiques ou élaborés).

  • 05AOEMIP-AAv1 (30H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura composer et tester un programme écrit en langage assembleur ARM en utilisant des outils de développement, pour la compilation et la visualisation des registres et du contenu de la mémoire, en respectant le standard AAPCS, afin d’exécuter un programme de calcul ou de traitement de chaînes de caractères sur un microcontrôleur STM32.

  • 05AOEMIP-AAv2 (33H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura faire interagir un microcrontrôleur STM32 avec des leds, des boutons poussoirs et un signal de demande d'interruption extérieur au microcontrôleur

  • 05AOEMIP-AAv3 (24H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, sera capable d'utiliser un timer pour contrôler une temporisation ou la période d'interruptions périodiques ou générer un signal à modulation de largeur d'impulsion, modifier son rapport cyclique et l'appliquer à une broche physique du microcontrôleur STM32, en utilisant, dans un cadre guidé, l'interface de registres du timer, puis en complétant une API d'encapsulation des fonctionnalités du timer pour obtenir une durée ou un signal PWM conforme à celui attendu.

  • 06PODCPO-AAv1 (20H): A la fin de l’enseignement, les étudiants seront capables de comprendre les concepts de la programmation orientée objet. En particulier, les étudiants seront capables d’expliquer les concepts d’héritage, d’interface, de liaison dynamique et liaison statique, polymorphisme objet et paramétrique, méthodes statiques.

  • 06POESIN-AAv6 (17H): A la fin du semestre, l’étudiant doit être capable d’implémenter ces techniques de base du traitement numérique du signal dans un langage interprété de type python, matlab ou octave, et les implanter sur une cible matérielle (unité de traitement numérique). L’étudiant aura consulté et assimilé les ressources scientifiques nécessaires afin de répondre au travail à réaliser.

  • 06POGEMB-AAv1 (42H): L'étudiant du cours de microprocesseurs, à l'issue du semestre, saura faire communiquer par liaison série, RS232, I2C ou SPI, un microcrontrôleur STM32 avec un système numérique extérieur en développant une API simple (RS232) ou en utilisant une API simple, fournie et connue, (I2C, SPI) permettant l'émission et la réception d'un ensemble d'octets afin d'une part d'émettre et de recevoir des chaînes de caractères ASCII sans erreur et sans perte depuis et vers un terminal (RS232) et d'autre part de générer des trames I2C ou SPI, compatibles avec le circuit numérique adressé, dans le but de le configurer et de lire ou d'écrire des données.

  • 07_X-CRS-AAv2 (29.25H): À l'issue de cet enseignement, les étudiants du septième semestre seront capables de comprendre et d'appliquer la mise en oeuvre de bas niveau (sans recourir à des bibliothèques tierces dissimulant l'essentiel) de programmes communiquant selon les protocoles du modèle TCP/IP (clients et serveurs UDP et TCP).

  • 07_X-CRS-AAv3 (36H): À l'issue de cet enseignement, les étudiants du septième semestre seront capables de comprendre et d'appliquer la mise en oeuvre de bas niveau (sans recourir à des bibliothèques tierces dissimulant l'essentiel) de programmes communiquant selon les protocoles du modèle HTTP (clients et serveurs HTTP, HTTPS, WebSocket).

  • 07_X-CRS-AAv5 (33.75H): À l'issue de cet enseignement, les étudiants du septième semestre seront capables de réaliser et coordonner un réseau de capteurs autour du bus CAN.

  • 07_X-IPS-AAv9 (13H): Modélisation pour la commande vectorielle d'un moteur synchrone. À l'issue de cet enseignement, l'étudiant du septième semestre sera capable, en binôme, d'établir un modèle afin de mettre en oeuvre la commande vectorielle d'un moteur synchrone, avec les asservissements de courant et de vitesse. Le contexte de développement amènera à la maîtrise des outils de prototypage rapide afin de basculer d'un modèle simulé à un code fonctionnel pour la cible.

  • 07_X-IPS-AAv10 (12H): Variation de vitesse. À l'issue de cet enseignement, l'étudiant du septième semestre sera capable, en binôme, de concevoir un programme permettant de piloter un variateur de vitesse via un bus de terrain afin de respecter les différents modes de marche.

  • 07_X-SEN-AAv2 (9H): A l'issue du semestre 7, l'étudiant sera capable d'écrire un driver pour un système d'exploitation simple pour permettre à une tâche de communiquer de manière optimale avec un périphérique de son choix et de démontrer son bon fonctionnement à l'aide d'un programme de test qu'il aura écrit.

  • 07_X-SEN-AAv3 (30H): A l'issue du semestre 7, l'étudiant sera capable de concevoir une application sur microcontrôleur STM32 dans laquelle l'ensemble du travail à réaliser a été découpé en plusieurs tâches, en respectant un cahier des charges et de rajouter les éléments de synchronisation nécéssaires à l'échanges des données entre tâches et avec les périphériques. Il sera capable de programmer sa solution en utilisant les primitives de FreeRTOS.

  • 07_X-SEN-AAv4 (30H): A l'issue du semestre 9, l'étudiant sera capable de structurer un projet embarqué de manière à assurer une sécurité de fonctionnement optimale.

  • 07_X-SEN-AAv5 (30H): A l'issue du semestre 7, l'étudiant sera capable de déployer une solution de communication sécurisée pour transmettre et exploiter des données provenant de capteurs dans le cloud.

  • 07_O-TSI-AAv4 (28H): A la fin du semestre, l’étudiant doit être capable de concevoir, analyser et mettre en œuvre des filtres numériques de type RII ou RIF en réponse à des spécifications d’un cahier des charges. Pour mener à bien ce travail, l’étudiant devra pouvoir : (1) Traduire les spécifications sous forme d’un gabarit. (2) Choisir adéquatement une structure de filtre (RII ou RIF) et une méthode de synthèse (transformation bilinéaire, invariance impulsionnelle ou échantillonnage de la fonction de transfert) en argumentant la pertinence des choix effectués. (3) Déterminer les coefficients du filtre par calcul direct ou à l’aide d’outil de prototypage rapide type matlab/simulink. (4) Implémenter le filtre dans un langage interprété de type python, matlab ou octave et valider ses performances vis-à-vis du gabarit spécifié. Il devra également pouvoir étudier l’influence de la distorsion en fréquence impliquée par la méthode de synthèse. (5) Choisir une forme (directe, cascade ou parallèle) de mise en œuvre. Il devra également pouvoir étudier l’influence de la distorsion en fréquence impliquée par la quantification du filtre sur un nombre fini de bits (sensibilité à la représentation finie des coefficients). (6) Implanter le filtre sur une cible matérielle de type microcontrôleur ou DSP. (7) Valider la synthèse vis-à-vis du cahier des charges par mesure à l’aide d’un analyseur de spectre.

  • 07_O-TSI-AAv5 (21H): A la fin du semestre, l’étudiant doit être capable de concevoir, analyser et mettre en œuvre un synthétiseur numérique à synthèse soustractive supportant le protocole de communication MIDI (Musical Instrument Digital Interface) dédié à la musique. Pour mener à bien ce travail, l’étudiant devra pouvoir : (1) Générer des signaux sonores de base de type sinus, carré, triangle, dent de scie par lecture de table. La fréquence de ces signaux devra être fonction de la note saisie au clavier MIDI. L’amplitude devra être modulée au cours du temps par une enveloppe de type ADSR (Attack Decay Sustain Release pour Attaque Chute Entretien Extinction en français). (2) Simuler et mettre en œuvre un filtrage numérique de type RII ou RIF dont la résonnance et la fréquence de coupure sont adaptées à la note reçue. La gestion de l’enveloppe d’amplitude (ADSR) devrait donner vie au son généré. (3) Ajouter un traitement numérique du son pour générer des effets de type Réverb (réverbération) ou de polyphonie. (4) Implanter ces algorithmes de la synthèse sonore sur une cible matériel de type microcontrôleur ou DSP.

  • 07_O-TSI-AAv7 (15H): A la fin du semestre, l’étudiant sera capable d’appliquer efficacement sur une image d’entrée un ou plusieurs algorithmes classiques de traitement et d’analyse d’images. Il doit être en mesure d’optimiser la paramétrisation de chaque algorithme et d’analyser la pertinence et les limites des résultats obtenus.

  • 07_O-TSI-AAv8 (12H): A la fin du semestre, l’étudiant sera capable de concevoir, analyser et mettre en œuvre une chaine de traitement et d’analyse d’images en réponse à un cahier des charges traduisant les besoins d’une nouvelle application de vision par ordinateur. Il s’agit en particulier de : (1) trouver le bon opérateur de prétraitement vis-à-vis de la nature du bruit dans l’image (gaussien, impulsionnel ou uniforme), (2) faire un choix justifié sur la méthode et sur l’opérateur de segmentation à utiliser, (3) savoir identifier les bons attributs caractéristiques pour l’analyse et l’exploitation de l’information présente dans l’image, (4) choisir un algorithme de reconnaissance d’objets adapté à la problématique, (5) implémenter les algorithmes dans un langage interprété de type matlab ou octave et finalement (6) faire les tests nécessaires pour valider la solution proposée et évaluer de manière critique les résultats obtenus.

  • 07_O-TSI-AAv9 (6H): A la fin du semestre, l’étudiant sera capable d’utiliser les outils de la bibliothèque openCV et réaliser l’implantation d’une solution de traitement et d’analyse d’images sur une carte type microcontrôleur connectée à une caméra.

  • 07_O-TSI-AAv10 (6H): A la fin du semestre, l’étudiant sera capable d’utiliser les bibliothèques des techniques d’apprentissage profond (deep learning).

  • 07_O-MSI-AAv2 (20H): A la fin de du module MSI, un étudiant sera capable de comprendre la notion de Design Pattern. En particulier, l'étudiants sera capable d’expliquer et de développer une solution en appliquant un ou des Design Patterns.

  • 07_O-MSI-AAv3 (20H): A la fin du module MSI, un étudiant sera capable d’utiliser un Framework. En particulier, un étudiant sera capable de développer une application REST en utilisant le modèle d’architecture Model-View-Controller (MVC)

  • 07_O-CMV-AAv3 (14H): A la fin de l'enseignement, dans un contexte pluridisciplinaire donné, avec un système existant imparfait, partiellement documenté et éventuellement non-fonctionnel, et avec un cahier des charges disciplinaires donné, le groupe d'étudiant doit être capable de mettre en oeuvre une démarche complète de conception: analyse du besoin, choix justifié de solutions, conception et dimensionnement, réalisation, validation et documentation.

  • 07_O-CMV-AAv4 (13H): À l'issue de cet enseignement, le groupe d'étudiants doit être capable de mettre en oeuvre un système numérique permettant de mesurer les grandeurs physiques nécessaires à l'étude et la caractérisation des vibrations d'un système mécanique. Pour mettre en oeuvre cette chaîne d'instrumentation, le groupe d'étudiants devra être capable de :

  • 07_O-CMV-AAv5 (12H): À l'issue de cet enseignement, le groupe d'étudiants doit être capable d'asservir un moteur en rotation permettant d'exciter un système vibrant. Pour mettre en oeuvre cet asservissement, le groupe d'étudiants devra être capable de :

  • 07_O-TSI-AAv4 (28H): A la fin du semestre, l’étudiant doit être capable de concevoir, analyser et mettre en œuvre des filtres numériques de type RII ou RIF en réponse à des spécifications d’un cahier des charges. Pour mener à bien ce travail, l’étudiant devra pouvoir : (1) Traduire les spécifications sous forme d’un gabarit. (2) Choisir adéquatement une structure de filtre (RII ou RIF) et une méthode de synthèse (transformation bilinéaire, invariance impulsionnelle ou échantillonnage de la fonction de transfert) en argumentant la pertinence des choix effectués. (3) Déterminer les coefficients du filtre par calcul direct ou à l’aide d’outil de prototypage rapide type matlab/simulink. (4) Implémenter le filtre dans un langage interprété de type python, matlab ou octave et valider ses performances vis-à-vis du gabarit spécifié. Il devra également pouvoir étudier l’influence de la distorsion en fréquence impliquée par la méthode de synthèse. (5) Choisir une forme (directe, cascade ou parallèle) de mise en œuvre. Il devra également pouvoir étudier l’influence de la distorsion en fréquence impliquée par la quantification du filtre sur un nombre fini de bits (sensibilité à la représentation finie des coefficients). (6) Implanter le filtre sur une cible matérielle de type microcontrôleur ou DSP. (7) Valider la synthèse vis-à-vis du cahier des charges par mesure à l’aide d’un analyseur de spectre.

  • 07_O-TSI-AAv5 (21H): A la fin du semestre, l’étudiant doit être capable de concevoir, analyser et mettre en œuvre un synthétiseur numérique à synthèse soustractive supportant le protocole de communication MIDI (Musical Instrument Digital Interface) dédié à la musique. Pour mener à bien ce travail, l’étudiant devra pouvoir : (1) Générer des signaux sonores de base de type sinus, carré, triangle, dent de scie par lecture de table. La fréquence de ces signaux devra être fonction de la note saisie au clavier MIDI. L’amplitude devra être modulée au cours du temps par une enveloppe de type ADSR (Attack Decay Sustain Release pour Attaque Chute Entretien Extinction en français). (2) Simuler et mettre en œuvre un filtrage numérique de type RII ou RIF dont la résonnance et la fréquence de coupure sont adaptées à la note reçue. La gestion de l’enveloppe d’amplitude (ADSR) devrait donner vie au son généré. (3) Ajouter un traitement numérique du son pour générer des effets de type Réverb (réverbération) ou de polyphonie. (4) Implanter ces algorithmes de la synthèse sonore sur une cible matériel de type microcontrôleur ou DSP.

  • 07_O-TSI-AAv7 (15H): A la fin du semestre, l’étudiant sera capable d’appliquer efficacement sur une image d’entrée un ou plusieurs algorithmes classiques de traitement et d’analyse d’images. Il doit être en mesure d’optimiser la paramétrisation de chaque algorithme et d’analyser la pertinence et les limites des résultats obtenus.

  • 07_O-TSI-AAv8 (12H): A la fin du semestre, l’étudiant sera capable de concevoir, analyser et mettre en œuvre une chaine de traitement et d’analyse d’images en réponse à un cahier des charges traduisant les besoins d’une nouvelle application de vision par ordinateur. Il s’agit en particulier de : (1) trouver le bon opérateur de prétraitement vis-à-vis de la nature du bruit dans l’image (gaussien, impulsionnel ou uniforme), (2) faire un choix justifié sur la méthode et sur l’opérateur de segmentation à utiliser, (3) savoir identifier les bons attributs caractéristiques pour l’analyse et l’exploitation de l’information présente dans l’image, (4) choisir un algorithme de reconnaissance d’objets adapté à la problématique, (5) implémenter les algorithmes dans un langage interprété de type matlab ou octave et finalement (6) faire les tests nécessaires pour valider la solution proposée et évaluer de manière critique les résultats obtenus.

  • 07_O-TSI-AAv9 (6H): A la fin du semestre, l’étudiant sera capable d’utiliser les outils de la bibliothèque openCV et réaliser l’implantation d’une solution de traitement et d’analyse d’images sur une carte type microcontrôleur connectée à une caméra.

  • 07_O-TSI-AAv10 (6H): A la fin du semestre, l’étudiant sera capable d’utiliser les bibliothèques des techniques d’apprentissage profond (deep learning).

  • 07_O-MSI-AAv2 (20H): A la fin de du module MSI, un étudiant sera capable de comprendre la notion de Design Pattern. En particulier, l'étudiants sera capable d’expliquer et de développer une solution en appliquant un ou des Design Patterns.

  • 07_O-MSI-AAv3 (20H): A la fin du module MSI, un étudiant sera capable d’utiliser un Framework. En particulier, un étudiant sera capable de développer une application REST en utilisant le modèle d’architecture Model-View-Controller (MVC)

  • 07_O-CMV-AAv3 (14H): A la fin de l'enseignement, dans un contexte pluridisciplinaire donné, avec un système existant imparfait, partiellement documenté et éventuellement non-fonctionnel, et avec un cahier des charges disciplinaires donné, le groupe d'étudiant doit être capable de mettre en oeuvre une démarche complète de conception: analyse du besoin, choix justifié de solutions, conception et dimensionnement, réalisation, validation et documentation.

  • 07_O-CMV-AAv4 (13H): À l'issue de cet enseignement, le groupe d'étudiants doit être capable de mettre en oeuvre un système numérique permettant de mesurer les grandeurs physiques nécessaires à l'étude et la caractérisation des vibrations d'un système mécanique. Pour mettre en oeuvre cette chaîne d'instrumentation, le groupe d'étudiants devra être capable de :

  • 07_O-CMV-AAv5 (12H): À l'issue de cet enseignement, le groupe d'étudiants doit être capable d'asservir un moteur en rotation permettant d'exciter un système vibrant. Pour mettre en oeuvre cet asservissement, le groupe d'étudiants devra être capable de :

  • 09_O-CNO-AAV3 (10H): L'étudiant du module CNO, à l'issue du module, sera capable, de dimensionner et de concevoir une chaîne de com-munication optique correspondant à un cahier des charges précis et fourni et de la vali-der au moyen de simulations avec un logiciel dédié (par exemple OptisystemTM de Op-tiwave).

  • 09_O-CNO-AAV8 (15H): L'étudiant du module CNO, à l'issue du module, sera capable d’analyser, d’implémenter et d’étudier les performances (en EVM, SER, BER) d’une chaîne de communication numérique mono-porteuse (M-QAM, M-PSK) ou multi-porteuse (CP-OFDM) simple pour un canal additif gaussien ou sélectif en fréquence stationnaire. L’étudiant sera également capable d’implémenter quelques algorithmes classiques au niveau du récepteur à l’aide de préambule et sym-boles pilotes (correction de décalage de fréquence porteuse, synchronisation, égalisa-tion zero-forcing, égalisation LMS linéaire).

  • 09_O-IAS-AAv4 (30H): A l'issue du module, les étudiantes et les étudiants seront capables de mettre en oeuvre différents outils et bibliothèques logicielles existantes liées à l'IA pour des domaines d'application industriels abordés.

  • 09_O-MRA-AAv2 (12.5H): À la fin du semestre, les étudiants de MRA seront capables d'obtenir le modèle géométrique direct d'un robot sériel, à liaisons rotoïdes et prismatiques, en utilisant soit un schéma cinématique, soit à partir de l'analyse des axes d'un robot réel. Ceci inclue:

  • 09_O-MRA-AAv3 (12.5H): À la fin du semestre, les étudiants de MRA seront capables d'obtenir le modèle cinématique direct et inverse d'un robot sériel, à liaisons rotoïdes et prismatiques, en utilisant soit un schéma cinématique soit par l'analyse d'un robot réel. Ceci inclue:

  • 09_O-MRA-AAv4 (12.5H): À la fin du semestre, les étudiants de MRA seront capables d'obtenir le modèle statique direct et inverse d'un robot sériel, à liaisons rotoïdes et prismatiques, en utilisant soit le modèle géométrique et/ou le schéma cinématique du robot. Ceci inclue:

  • 09_O-MRA-AAv5 (12.5H): À la fin du semestre, les étudiants de MRA seront capables d'obtenir le modèle dynamique d'un robot sériel, à liaisons rotoïdes et prismatiques, sous la forme d'un système d'équations différentielles nonlinéaires, en utilisant le modèle cinématostatique et la méthode double récursive de Newton-Euler. Ceci inclue:

  • 09_O-CSP-AAv1 (15H): L'étudiant du module CSP, à l'issue du module, saura utiliser la chaîne de développement d'un système sur puce programmable (Intel-FPGA) pour concevoir un système numérique, depuis la modélisation en langage VHDL d'un circuit numérique spécifique jusqu'au fonctionnement du système complet sur cible matérielle lorsque des fichiers génériques à adapter ou des fichiers à compléter, de format connu, sont fournis

  • 09_O-CSP-AAv2 (36H): L'étudiant du module CSP, à l'issue du module, sera capable de proposer le modèle synthétisable d'un circuit numérique synchrone, en langage VHDL, et comportant à la fois des blocs fonctionnels combinatoires et séquentiels d'une complexité comparable à ceux vus dans le cours de circuits numériques

  • 09_O-CSP-AAv3 (15H): L'étudiant du module CSP, à l'issue du module, saura connecter à une interface Avalon un circuit numérique compatible et saura spécifier le format des cycles de lecture et d'écriture adaptés à ce cicuit numérique permettant un échange de données optimal

  • 09_O-CSP-AAv4 (42H): L'étudiant du module CSP, à l'issue du module, saura concevoir l'architecture d'un circuit numérique synchrone, structurée en une unité de traitement et une unité de contrôle, éventuellement elles-mêmes hiérarchisées, correspondant à un cahier des charges fourni, avec des signaux et des blocs fonctionnels clairement identifiés et spécifiés et en minimisant le risque d'un état métastable dû à la présence éventuelle de signaux asynchrones ou de domaines d'horloges

  • 09_O-CSP-AAv5 (15H): L'étudiant du module CSP, à l'issue du module, saura organiser une unité de contrôle sous forme hiérarchisée et structurée afin de faciliter son développement et son test permettant la commande de tous les éléments de l'unité de traitement associée pour obtenir un fonctionnement global, traitement et contrôle, correct

  • 09_O-CSP-AAv6 (21H): L'étudiant du module CSP, à l'issue du module, saura développer en langage C un pilote (ou API : Application Programming Interface) adapté à un circuit numérique donné afin de pouvoir l'utiliser dans une application logicielle écrite en langage C sans connaître les détails de son implémentation matérielle

  • 09_O-CCM-AAV3 (12H): A la fin de ce cours, l’étudiant.e sera capable de construire un observateur d’état et de synthétiser un contrôle par retour d’état observé sur un système linéaire SISO répondant à un cahier des charges (stabilité, précision, rapidité, robustesse).

  • 09_O-CCM-AAV4 (12H): A la fin de ce cours, l’étudiant.e sera capable de modéliser les incertitudes de modélisation d’un système dynamique à temps discret et les incertitudes d’observation de l’état du système, en vue d’une estimation adaptative de l’état qu’il réalisera par filtrage de Kalman pour le cas de systèmes linéaires.

  • 09_O-CCM-AAV5 (20H): A la fin de ce cours, l’étudiant.e sera capable de linéariser un processus dynamique ou une loi d’observation afin de procéder à une estimation d’état adaptative par filtrage de Kalman étendu (filtre EKF) et d’effectuer une comparaison avec un filtre de Kalman Unscented (UKF).

  • 09_O-CCM-AAV6 (16H): A la fin de ce cours, l’étudiant.e sera capable de réaliser une commande d’un système linéaire par retour d’état selon un critère d’optimisation quadratique : commande LQR ou commande LQG lorsque l’état n’est que partiellement observé

  • 09_O-CCM-AAV8 (42H): A la fin de ce cours, l’étudiant.e sera capable d’implémenter, implanter et régler quelques solutions de commande de systèmes non-linéaires : commande linéarisante, commande par platitude, commande par fonction de Lyapunov,…