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Abstract—Turn change prediction and next speaker prediction
are two important tasks in multimodal, multiparty human-agent
interaction. Predicting a change of dialogue turn and the most
probable next speaker can help an agent to decide whether he
should contribute to the discussion or wait for someone else to
speak. In this research, we propose a machine learning-based
approach for both turn change and next speaker prediction.
Individual as well as combined models are explored to tackle
these tasks. Results show that the proposed models outperform
baselines. An ablation study is also performed to measure the
importance of different features.

Index Terms—Human-Agent Interaction, Multimodal Interac-
tion, Multiparty Interaction, Machine Learning.

I. INTRODUCTION

In a dialogue, an utterance may induce a response from
one of the listeners, depending on the context. For instance,
a speaker can ask questions to one or more people that cause
a particular participant to reply. This change of speaker is
referred to as turn change and the process of turn distribution
among the meeting participants is called turn management [1].

In human-human interactions, turn management is mostly
implicit. Interaction participants are expected to know when
to speak, rather than explicitly being told to talk. Furthermore,
at each time the speaker can continue or can be interrupted by
any of the listeners, hence there is no ‘correct’ next speaker
and the ‘real’ next speaker is only known when anyone takes
the turn. Speaker and listeners exploit language as well as
various co-verbal and non-verbal signals such as pitch, gaze,
head and hand gestures, to implicitly negotiate turn change
[2]–[4]. Turn management is therefore a multimodal process.

User experience in multimodal human-agent interaction can
be improved if turn changes and next speakers are predicted
efficiently by the agents. Turn change and next speaker pre-
diction not only enable to understand when to contribute to
an interaction, but also help to detect who should speak next,
and thus generate an appropriate behaviour.

In this article, we propose a machine learning based
approach for turn change and next speaker prediction in
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multimodal, multiparty interaction. The proposed models are
compared against baselines on two different datasets, resulting
in improvement of predictions. In addition, an ablation study is
performed to investigate the importance of some of the features
for turn change and next speaker prediction. The remainder of
this article is divided into 7 sections. Section II presents some
existing works. The process of feature selection is explained
in section III. Section IV formalizes the problem and describes
the experimental methodology. Section V details experiments
and results, and section VI concludes the article.

II. RELATED WORK

This section reviews existing works, firstly with turn change
prediction processed independently, and secondly when com-
bined with next speaker prediction.

A. Models for Turn Change Prediction

One of the earliest turn management model is proposed
by Sacks et al. [5]. The authors report that conversations
proceed smoothly with only one people speaking at a time,
and that sub-dialogues with multiple participants speaking
simultaneously are short. Transition Relevance Places (TRPs)
mark the end of a turn and initiate a new turn. Relying on
TRPs, Sacks et al. propose rules for turn management [5]:
1) If the current speaker (S) selects the next speaker (N) in the
turn, S is expected to stop speaking, and N to speak next; 2) If
S does not select the next speaker, then any other participant
may self-select and whoever speaks first gets the turn; 3) If no
speaker self-selects, S may continue. Though these rules are
sufficiently generic to apply in various situations, they are not
specific enough to explain which interaction features signal
turn change and which ones indicate the next speaker in case
of turn change.

Guntakandla and Nielsen employ a J48 decision tree for
turn prediction using n-grams of current and previous Dialogue
Acts1 (DA) and current and previous speakers as features [2].
The model is trained on Switchboard dataset [8]. They report
an overall accuracy of 62.70% for turn change prediction.

Meshorer and Heeman propose a model that exploits ran-
dom forests to predict turn changes [3]. The model is also

1A dialogue act is the meaning of an utterance at the level of illocutionary
force [6] or as the function of a user’s utterance [7].



trained on Switchboard and uses current and previous DA, the
relative turn length 2 and the relative turn floor control 3 to
predict turn change. They report an accuracy of 76.05% and
a F1 score of 0.74 for turn change prediction.

Aldeneh et al. consider turn change as a sequence problem
[9]. They propose a turn change prediction model based on
LSTM applied to speech features such as loudness, intensity
or zero-crossing rate. The model is trained on Switchboard
and they report an F1 score of 0.65 for turn change prediction.
De Kok and Heylen propose a machine learning based model
for end-of-turn prediction [4], trained on AMI [10]. The
proposed model exploits DA, focus of attention, head gesture
and prosody as features to train CRF and HMM models. They
report a F1 score of 0.61 for end-of-turn prediction.

B. Models Combining Turn Change and Next Speaker

Several researchers have proposed combined models for turn
change and next speaker prediction. To this end, Petukhova and
Bunt studied the importance of various multimodal signals
such as gaze directions, verbal signals, lip movements and
posture shift for next speaker prediction [11]. The proposed
model looks for correlations between various multimodal
features and turn types such as turn taking, turn grabbing and
turn accepting in AMI dataset.

Kawahara et al. also propose a machine learning based turn
change and next speaker prediction model that relies on a
combination of gaze, prosody and head movements [12]. The
dataset used to train their models consists of 3 participants.
They report an accuracy of 70.60% for turn change and
69.06% for next speaker prediction using SVM.

Ishii et al. propose a probabilistic turn change and next
speaker prediction model funded on participants gaze transi-
tion patterns near the end of utterance in multiparty interaction
[13]. A total of 12 gaze transition patterns are used for predic-
tions. They achieve a F1 score 0.76 for turn change prediction
and an accuracy of 59.20% for next speaker prediction. Ishii
et al. then exploit human gaze and respiratory behaviour
for turn change and prediction of next speaker in multiparty
interaction [14]. The tests are performed on a custom dataset
of 4 participants. Sequential minimal optimization, which is a
variation of SVM, is used to train the models. Results show
that the model based on late fusion of eye gaze and respiratory
behaviour yields a F1 score of 0.75 for turn change prediction
and a F1 score of 0.52 for next speaker prediction. Ishii et al.
also propose a two-step machine learning model that predicts
initially whether or not a turn change occurs and then who
is the next speaker [15]. The model exploits head movements
of the speaker and listeners (amplitude and frequency) near
the end of the utterance. The model is trained via SVM on a
custom dataset of 4 participants. They achieve an accuracy of

2Two versions: (i) duration of a turn divided by the average speakers turn
duration, and (ii) number of words of a turn divided by the average number
of words of the speaker’s turns.

3Two versions: (i) total duration of the speaker’s turns divided by the du-
ration of the whole conversation, and (ii) total number of words the speaker’s
turns divided by the total number of words in the whole conversation.

75.00% for turn change prediction and an accuracy of 55.20%
for next speaker prediction. Ishii et al. also investigate the
role of mouth-opening transition pattern to predict the time
interval between the current utterance and the next utterance,
and the next speaker in multiparty interaction [16]. A SVM
is trained for turn change and next speaker prediction on a
custom dataset. They report a F1 score of 0.80 for turn change
prediction and a F1 score of 0.47 for next speaker prediction.

C. Summary and Discussion

A summary of the existing works is presented in Table I.
Most of the works consider turn change as a binary classifica-
tion problem at the end of each utterance. Both rule based and
machine learning based approaches are used for turn change
prediction. The most commonly features exploited for turn
change prediction are DA, prosody, gaze information, head
movements and speaker information.

Concerning next speaker prediction, existing works rely on
machine learning. The accuracies reached for next speaker
prediction are significantly lower than those achieved for turn
change prediction. The reason can be that next speaker predic-
tion is a multiclass classification problem which increases the
chance of miss-classification. Another reason is the uncertainty
of the task since there can be multiple potential next speakers
after a certain utterance since any of a meeting participants
can speak at any time.

III. FEATURE SELECTION

In this article, features are selected according to their
relevance for turn change and next speaker, based on the
literature review and an analysis of two datasets: AMI [10]
and MPR [17].

A. Features

Speaker Role: Speaker role refers to the identity of the current
speaker. In AMI, participants are identified by their role i.e.
Project Manager, Marketing Expert, User Interface Designer,
and Industrial designer. In MPR, participants are identified by
IDs: A, B, C (human participants) and NAO (a robot). Work
from [2] highlights the importance of including current speaker
for turn change prediction.
Dialogue Act: DA is an important feature for turn change
and next speaker prediction. For instance, a DA involving a
question often prompts a turn change and leads (one of) the
addressee(s) to answer. The importance of DA for the two
tasks is highlighted in several existing works [2]–[4], [11].
Pause Duration: Psycho-linguistic evidence shows a strong
correlation between pause duration and turn change [18], [19].
A quantitative analysis [18] of speaker changes reports that
91% of the speaker changes occur with a pause between two
utterances whereas only 8% of the turn changes occur with no
pause, and 1% of the utterances overlap another one.
Start and End Time of Utterance: The start and end time
of an utterance enable to calculate utterance duration which
can play an important role in human-agent interaction [3]. The
analysis of the AMI and MPR datasets show that the utterances



TABLE I
SUMMARY OF RELATED WORKS FOR TURN CHANGE AND NEXT SPEAKER PREDICTION

Reference Approach Dataset Salient Features Turn Change Next Speaker
Guntakandla and
Nielsen [2]

Decision Tree
(J48)

Switchboard Current and previous DA, current and
previous speakers

62.00% Accuracy NA

Meshorer and Heeman
[3]

Random Forest Switchboard Current and previous DA, relative turn
length, relative floor control

76.05% Accuracy NA

Aldeneh et al. [9] LSTM Switchboard Speech features e.g loudness, intensity 0.65 F1 Score NA
Petukhova and Bunt [11] Correlation AMI Gaze, head movements, hand gestures feature correlations feature correlations
De kok and Heylen [4] CRF & HMM AMI DA, focus, head movements, prosody 0.65 F1 Score NA
Kawarah et al. [12] SVM Custom Dataset Gaze, prosody and head movements 70.00% Accuracy 69.06% Accuracy
Ishii et al. [13] Probabilistic Custom Dataset Gaze transition patterns 0.76 F1 Score 59.2% Accuracy
Ishii et al. [14] SVM Custom Dataset Gaze and respiratory behaviour 0.75 F1 Score 0.52 F1 Score
Ishii et al. [15] SVM Custom Dataset Head movements 75.00% Accuracy 55.20 % Accuracy
Ishii et al. [16] SVM Custom Dataset Mouth opening transition patterns 0.80 F1 Score 0.47 F1 Score

at the beginning of a conversation are less likely to have turn
changes compared to utterances at later stages.
Focus of Attention: The importance of gaze and focus
of attention as a marker for turn change and next speaker
prediction has been largely investigated [4], [11]–[14]. The
results from these research works show that focus of attention
is fundamental for turn change and next speaker prediction.
Addressee Role: Though there is no evidence from existing
works that addressee role is important for turn change and
next speaker prediction, we propose to add it in the feature set.
The rationale is that if a speaker asks a question to someone,
that addressee is more likely to take the turn and respond to
the speaker. The analysis of AMI also reveals that utterances
addressed to individuals rather than groups are more likely to
cause turn change.

B. Discussion

Despite psycholinguistic evidences, to the best of our
knowledge none of the existing works has exploited pause
duration as a feature for turn change and next speaker pre-
diction in multiparty interaction. A reason can be that pause
duration is a dynamic attribute: pause duration between two
utterances cannot be calculated before the start of the next
utterance. An implementation solution is to regularly evaluate
pause duration and trigger the turn change prediction.

Addressee role is another feature that, to the best of our
knowledge, has not yet been exploited for turn change and next
speaker prediction. This feature is selected based on the analy-
sis of several datasets that reveal that the utterances addressed
to individuals are more likely to evoke a response causing
turn change than those addressed to a group. Furthermore, the
addressee of the current utterance is often the next speaker.

IV. PROBLEM FORMALIZATION AND METHODOLOGY

Turn management is divided into two sub-tasks: turn change
and next speaker prediction. Two approaches are proposed to
solve these tasks: (i) two independent models; (ii) a connected
model where turn change is predicted in the first step and then
next speaker is predicted by including turn change as a feature.

Speaker Focus

Turn Change

Next Speaker

DA

Speaker Role

Addressee Role

Pause Duration

DA Start Time

DA End Time

Contextual
Features

Textual & Speech
Features

Combined
Feature Vector

Turn Change
Prediction Model

Next Speaker
Prediction Model

Fig. 1. ML based independent and combined turn change and next speaker
prediction models. Turn change is used as input feature for next speaker
prediction in combined model.

A. Turn Change Prediction and Next Speaker Prediction Con-
sidered as Independent Problems

Given a set of features, the first task consists in predicting
whether the speaker of an utterance differs from the speaker
of the next utterance. Turn change prediction is a binary clas-
sification problem since there are only two possible outputs.

The second task performed is to predict who is the speaker
of the next utterance. Next speaker prediction is a multiclass
classification problem since there are more than two possible
outputs. For instance in AMI, the next speaker can be any of
the four participants.

For the sake of simplification, in this article it is assumed
that an utterance consists of a single DA and thus both turn
change and next speaker are predicted after every DA.

Figure 1 shows the experimental methodologies considering
turn change and next speaker prediction as independent as
well as combined models. Input features, divided into speaker
focus, contextual features, and textual and speech features, are
fused together to form a combined feature vector that is used
to train both models. The turn change prediction model outputs
a binary value (a turn change occurs / no turn change). The
next speaker prediction model predicts the speaker for the next
utterance among the meeting participants.

B. Combining Turn Change and Next Speaker Prediction

Turn change and next speaker prediction are two related
tasks as next speaker prediction depends on turn change: a turn



change signals that the speaker of the next utterance cannot
be the current speaker and someone different from the current
speaker has to speak next. Thus, predicted turn change can
also be used as an additional feature.

In this case, the next speaker is predicted in two steps: 1)
the input features are used to predict turn change, and 2) the
predicted turn change value is added to the feature vector (the
arrow from turn change to next speaker prediction model in
Figure 1). The real turn change values are used to train the
model whereas at run time the predicted turn change value is
exploited as additional feature.

To evaluate our turn change prediction models, two base-
lines are selected: (i) Meshorer and Heeman [3], and (ii)
majority class for turn change. The first baseline is selected
because (a) it returns the highest performance on Switchboard
and (b) its features are available in most of the existing datasets
and therefore results can be reproduced. To evaluate our next
speaker prediction model, the majority class for next speaker
prediction is chosen as baseline. Indeed, the selected features
are not available in the datasets exploited by existing research
works, nor is it possible to reproduce their results on the
commonly used datasets (i.e. Switchboard and AMI) as they
are based on unavailable features. Hence, unfortunately, it is
not possible to compare our proposed model with any of the
existing models as baseline for next speaker prediction.

V. EXPERIMENTS AND RESULTS

This section describes the datasets, the procedure followed
to perform the experiments and the results obtained.

A. Datasets

The datasets used to train and test the turn change and next
speaker prediction models are AMI [20] and MPR [17]: they
are the only corpora that contain annotated data for all the
features selected in Section III.

AMI is a multimodal interaction corpus of 100 hours of
meeting recordings. Each meeting involves 4 participants, and
is either task-oriented or open discussion. These participants
are Project Manager (PM), Industrial Designer (ID), Marketing
Executive (ME), and User Interface Expert (UI). The AMI
dataset uses custom taxonomy for DA annotation.

MPR dataset contains 30 trios of Japanese individuals that
participate in two 25-minute interactive sessions with a robot
in which they repeatedly engage in a conversational game.
The meeting participants are labelled as A, B and C, while
the robot is labelled as NAO. The MPR dataset uses DIT++
[21] taxonomy for DA annotation.

B. Procedure

Three sets of experiments are performed : (i) experiments
performed to evaluate performance of turn change and next
speaker prediction models individually, as mentioned in Sec-
tion IV-A, (ii) experiments performed for next speaker predic-
tion using predicted turn change explained in Section IV-B,
and (iii) experiments performed for ablation study in order to
evaluate the importance of some of the features.

1) Experiments for Individual Turn Change and Next
Speaker Prediction Models: Two separate sets of experiments
are performed: one for turn change prediction model, and
the other for next speaker prediction model. A conventional
machine learning pipeline is followed to carry out the experi-
ments. The categorical features in the feature set are one-hot
encoded to convert them into a numerical form. The feature set
is normalized using standard scaling. The data set is divided
randomly into 80-20% training and test sets, respectively.

Six of the most classic machine learning classifiers have
been trained and tested: XGboost (XGB) [22], Multilayer
Perceptron (MLP) [23], Random Forest (RF) [24], Logistic
Regression (LR) [25], Support Vector Machines (SVM) [26]
and K-Nearest Neighbours (KNN) [27]. For all the classifiers,
default parameters as specified in Python’s Sklearn library [28]
are used. Finally, accuracy and F1 measure have been em-
ployed to evaluate performances. Accuracy is used to compare
the results with baselines and F1 measure is considered since
the class distribution is irregular in both datasets [28].

2) Experiments for Model Combining Turn Change and
Next Speaker Prediction: Concerning the experiments per-
formed to evaluate the model combining turn change and next
speaker prediction, the predicted turn change is included in
the feature set in order to predict the next speaker. The values
for turn change prediction are obtained with the model that
yields best result for turn change prediction. The machine
learning pipeline, the algorithms and the evaluation metrics
are the same as those of Section V-B1.

3) Ablation study: In the proposed models, two new fea-
tures (i.e. pause duration and addressee role) are added.
Experiments are performed with and without these features
to evaluate if these features significantly improve turn change
and next speaker predictions.

Since the importance of different features is studied individ-
ually on turn change and next speaker prediction models, two
sets of experiments are performed: (i) Turn change prediction,
(ii) and Next speaker prediction.

The naming convention for the experiments follows the
pattern dataset-task-experiment, where: dataset refers to ami
or mpr; task refers to tc (for turn change prediction) or ns
(for next speaker prediction); experiment refers to one of the
4 different experiment types i.e. -ar-pd, +ar-pd, -ar+pd, and
+ar+pd. In experiments -ar-pd, the models are trained using
the feature set presented in Section III without addressee role
(-ar) and pause duration (-pd). In experiments +ar-pd and -
ar+pd, each feature is added independently, while in +ar+pd,
the whole feature set is used. To find statistical significance,
t-tests are performed between pairs of experiments (-ar-pd,
+ar-pd), (-ar-pd, -ar+pd), and (-ar-pd, +ar+pd).

The machine learning pipeline, the algorithms and the
evaluation metrics for the ablation experiments are the same
as the ones used for the other experiments.

C. Results

1) Results for Individual Turn Change and Next Speaker
Prediction Models: Table II show that for both the MPR and



TABLE II
RESULTS FOR TURN CHANGE PREDICTION FOR MPR AND AMI DATASETS

(ACCURACIES IN %, F1 VALUES IN BRACKETS).

Algorithm MPR AMI
XGB 83.02 (0.82) 87.59 (0.88)
RF 82.32 (0.82) 86.42 (0.86)
MLP 80.43 (0.80) 64.36 (0.64)
SVM 76.46 (0.71) 66.55 (0.66)
KNN 76.72 (0.75) 62.95 (0.63)
LR 75.85 (0.71) 65.83 (0.66)
Baseline 1 [3] 77.72 (0.75) 60.05 (0.59)
Baseline 2 (Majority Class) 75.29 56.99

TABLE III
RESULTS FOR NEXT SPEAKER PREDICTION FOR MPR AND AMI DATASETS

(ACCURACIES IN %, WEIGHTED F1 VALUES IN BRACKETS)

Algorithm MPR AMI
XGB 65.64 (0.65) 64.04 (0.64)
RF 64.02 (0.64) 65.54 (0.66)
MLP 61.95 (0.61) 45.76 (0.49)
SVM 57.43 (0.57) 51.41 (0.51)
KNN 56.33 (0.56) 48.36 (0.48)
LR 56.96 (0.58) 50.88 (0.51)
Baseline (Majority Class) 36.62 32.81

AMI datasets, the proposed turn change model outperforms
both of the baselines. A maximum accuracy of 87.59% is
reached on AMI using XGB algorithm (baseline 1: 60.05%;
baseline 2: 56.99%). On MPR, the XGB algorithm achieves
a maximum accuracy of 83.02% which also outperforms
baselines 1 (77.72%) and 2 (75.29%).

Table III contains the results to evaluate the performance
of the next speaker prediction model. On AMI, the results
show that the proposed model achieves a best case accuracy
of 64.04% via the XGB algorithm, which is better than the
baseline accuracy of 32.81%. Similarly on MPR, a maximum
accuracy of 65.64% is achieved via the XGB algorithm, which
is better than the baseline accuracy of 36.62%.

2) Results for Model Combining Turn Change and Next
Speaker Prediction: Table IV depicts the results for the
combined turn change and next speaker prediction model. The
results show that for AMI, a maximum accuracy of 65.12%,
and a F1 value of 0.65 is obtained via the XGB and RF
algorithms. The value using XGB is greater than the value
obtained (64.04% and F1=0.64) when next speaker prediction
model is considered as an individual model. However for RF,
the value achieved via the individual next speaker prediction
model (65.54%, and F1 = 0.66) is greater than the combined
model. Concerning MPR, a maximum accuracy of 65.39%
and a F1 value of 0.65 are obtained using the XGB algorithm,
which is similar to the maximum values (65.64% and F1=0.65)
obtained via individual next speaker prediction model.

For both AMI and MPR datasets, the combined turn change
and next speaker prediction models outperform the baseline.
However, the comparison between individual and combined
next speaker prediction models show that the performance dif-
ference between the two models is not significant at p < 0.05

TABLE IV
RESULTS FOR MODEL COMBINING TURN CHANGE AND NEXT SPEAKER
PREDICTION (ACCURACIES IN %, WEIGHTED F1 VALUES IN BRACKETS).

Algorithm MPR AMI
XGB 65.39 (0.65) 65.12 (0.65)
RF 63.71 (0.63) 65.12 (0.65)
MLP 61.05 (0.61) 43.92 (0.44)
SVM 56.52 (0.56) 49.53 (0.49)
KNN 56.46 (0.56) 46.18 (0.46)
LR 56.67 (0.56) 51.51 (0.51)
Baseline (Majority Class) 36.62 32.81

(p=0.14 on AMI and p=0.66 on MPR).
3) Ablation Study: The Table V shows the results obtained

during the ablation study performed for turn change prediction
on AMI and MPR. The results show that for both AMI and
MPR, in the best case (using the XGB algorithm) the models
trained using both addressee role and pause duration (ami-
tc+ar+pd, mpr-tc+ar+pd), outperform the models trained with-
out these features (ami-tc-ar-pd, mpr-tc-ar-pd) and the models
trained including only one of these features in the feature set
(ami-tc+ar-pd, ami-tc-ar+pd, mpr-tc+ar-pd, and mpr-tc-ar+pd).
These results are significant at p < 0.05 (p=0.04 on AMI and
p=0.01 on MPR).

The Table VI depicts the results of the ablation study
performed for next speaker prediction. The results show that
for both AMI and MPR, the models trained using addressee
role and pause duration outperform both those trained without
these features and the models trained including only one of
these features. For both AMI and MPR, the best results are
obtained via the XGB algorithm. These results are significant
at p < 0.05 (p=0.04 on AMI and p=0.01 on MPR).

VI. DISCUSSION, CONCLUSION & PERSPECTIVES

Results from Tables II, III and IV show that both individual
and combined turn change and next speaker prediction models
perform better than baselines on AMI and MPR. Further-
more, combining turn change and next speaker prediction
(i.e. exploiting predicted turn change as additional feature
for next speaker prediction) does not yield any significant
performance improvement. One of the reason could be that
the error from turn change prediction model propagates to
next speaker prediction model.

Moreover, the ablation study shows a significant perfor-
mance improvement for turn change and next speaker pre-
diction when addressee role and pause duration are added to
the feature set.

One implementation difficulty concerns dynamic feature
values such as pause duration and speaker focus. One of the
possible solutions to estimate the dynamic values of pause
duration and speaker focus is to start a thread as soon as the
end of an utterance is detected. Then, the thread monitors the
time elapsed since the last utterance and tracks the speaker
gaze. The combined feature vector that includes the updated
values of pause duration and speaker focus can be transmitted
to the turn change and next speaker modules regularly. When



TABLE V
ABLATION STUDY FOR TURN CHANGE PREDICTION USING AMI AND MPR DATASETS (ACCURACIES IN %, F1 VALUES IN BRACKETS).

Alg. ami-tc-ar-pd ami-tc+ar-pd ami-tc-ar+pd ami-tc+ar+pd mpr-tc-ar-pd mpr-tc+ar-pd mpr-tc-ar+pd mpr-tc+ar+pd
XGB 65.96 (0.66) 65.96 (0.66) 87.09 (0.87) 87.59 (0.88) 75.94 (0.70) 75.94 (0.71) 82.70 (0.82) 83.02 (0.82)
RF 63.62 (0.64) 65.46 (0.65) 86.42 (0.86) 86.42 (0.86) 68.63 (0.68) 69.27 (0.68) 82.07 (0.81) 82.32 (0.82)
MLP 62.19 (0.62) 63.28 (0.63) 62.19 (0.62) 64.36 (0.64) 73.90 (0.70) 74.49 (0.72) 80.99 (0.81) 80.43 (0.80)
SVM 66.13 (0.66) 66.47 (0.66) 66.13 (0.66) 66.55 (0.66) 75.84 (0.70) 76.46 (0.71) 75.85 (0.70) 76.46 (0.71)
KNN 62.95 (0.63) 62.95 (0.63) 63.36 (0.63) 62.95 (0.63) 73.47 (0.71) 73.79 (0.71) 78.48 (0.77) 76.72 (0.75)
LR 63.28 (0.63) 65.80 (0.66) 63.28 (0.63) 65.83 (0.66) 75.60 (0.70) 75.87 (0.71) 75.62 (0.70) 75.85 (0.71)

TABLE VI
ABLATION STUDY FOR NEXT SPEAKER PREDICTION USING AMI AND MPR DATASETS (ACCURACIES IN %, WEIGHTED F1 VALUES IN BRACKETS).

Alg. ami-ns-ar-pd ami-ns+ar-pd ami-ns-ar+pd ami-ns+ar+pd mpr-ns-ar-pd mpr-ns+ar-pd mpr-ns-ar+pd mpr-ns+ar+pd
XGB 50.12 (0.50) 51.38 (0.51) 61.86 (0.62) 64.04 (0.64) 49.26 (0.47) 57.19 (0.57) 58.39 (0.57) 65.64 (0.65)
RF 46.77 (0.47) 49.79 (0.50) 61.77 (0.62) 65.54 (0.66) 41.22 (0.41) 47.93 (0.48) 56.31 (0.56) 64.02 (0.64)
MLP 43.92 (0.44) 44.25 (0.44) 43.92 (0.44) 45.76 (0.46) 47.26 (0.46) 53.81 (0.54) 55.79 (0.55) 61.77 (0.61)
SVM 48.95 (0.49) 51.38 (0.51) 48.95 (0.49) 51.41 (0.51) 46.74 (0.42) 57.29 (0.57) 47.73(0.43) 57.43 (0.57)
KNN 45.51 (0.45) 48.28 (0.48) 45.59 (0.46) 48.36 (0.48) 44.93 (0.45) 52.95 (0.53) 50.10 (0.50) 56.33 (0.56)
LR 46.68 (0.47) 50.96 (0.51) 46.68 (0.47) 50.88 (0.51) 46.09 (0.46) 56.95 (0.56) 46.14(0.41) 56.96 (0.56)

the models predict that the turn changes and select the next
speaker, the thread stops.

Even if the proposed turn change and next speaker predic-
tion models outperform existing baselines, there is still room
for improvement. For instance, in addition to the features used
in the proposed models, existing works show that prosody,
head and hand gestures can also be exploited. Thus, adding
these features can further improve the performance of turn
change and next speaker prediction models. However, cur-
rently, none of the existing datasets contains these features
along with the features exploited in this research work.
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