
EXERCICE TRANSMISSION DE PUISSANCE PAR ENGRENAGES

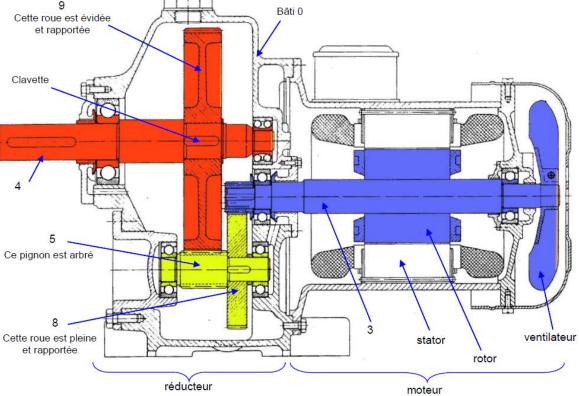
Exercice 1 Engrenages cylindriques simples.

Un train d'engrenages, dans lequel toutes les roues dentées sont en mouvement de rotation d'axes parallèles par rapport au bâti, est représenté sur la figure ci-dessous :

Question 1 : Indiquer, à l'aide de flèches, le sens de rotation de chacune des roues dentées.

Question 2 : Déterminer le nombre d'engrenages, puis le nombre d'engrenages à contact extérieur.

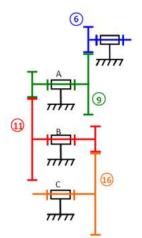
Question 3 : Donner l'expression du rapport de transmission $i = \frac{\omega_{e/0}}{\omega_{s/0}}$ du train d'engrenages.


Question 4 : Faire l'application numérique. En déduire s'il s'agit d'un réducteur ou d'un multiplicateur de vitesse.

Exercice 2 Motoréducteur SEW.

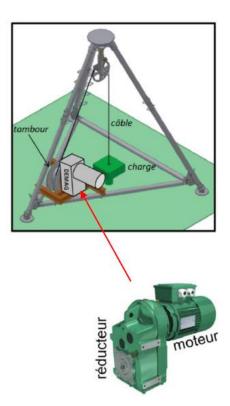
L'étude porte sur un motoréducteur SEW.

Bâti 0


Question 1 : Réaliser le schéma cinématique plan, puis déterminer la loi E/S du système (c'est-à-dire le rapport de transmission).

Exercice 3: Monte charge

I Présentation:


Le monte charge représenté ci-contre utilise un moteur (1500 tr/min) associé à un réducteur du fabricant DEMAG pour enrouler un câble sur un tambour et faire ainsi monter une charge.

La représentation du réducteur sous forme de schéma cinématique, est donnée ci-dessous :

Caractéristiques des roues dentées :

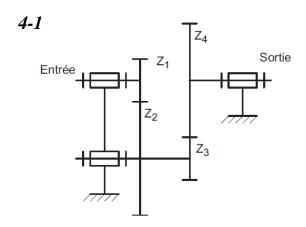

Rep	m	z
6	1	16
9a	1	46
9b	1	19
11a	1	59
11b	1,25	17
16	1,25 1,25	85

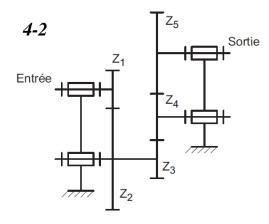
 $V_z(t)$

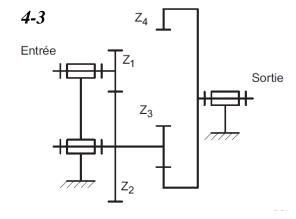
accélération

Pour obtenir un temps de montée minimal, tout en limitant la norme de l'accélération pendant le démarrage qui pourrait être à l'origine de dégâts sur la charge transportée, on impose le profil de vitesse ci-contre :

Q1. Repasser en couleur le schéma cinématique du réducteur et repérer les roues dentées indicées a et b.


Q3. Faire l'application numérique.


On fait l'hypothèse que pendant toute la montée de la charge, le diamètre d'enroulement des spires sur le tambour reste constant et est égal à 20 cm.


Q4. Déterminer la vitesse de rotation du tambour, en tr/min, permettant d'obtenir le profil de vitesse de la charge imposé.

Q5. Conclure quant au choix du concepteur d'utiliser ce réducteur.

Exercice 4 : déterminer les rapports de réduction des réducteurs ci-dessous

4-1

$$r = (-1)^2 \frac{Z_1, Z_3}{Z_2, Z_4} = \frac{Z_1, Z_3}{Z_2, Z_4}$$

L'entrée et la sortie tournent dans le même sens.

4_2

$$r = (-1)^3 \frac{Z_1 \cdot Z_3 \cdot Z_4}{Z_2 \cdot Z_4 \cdot Z_5} = -\frac{Z_1 \cdot Z_3}{Z_2 \cdot Z_5}$$

L'entrée et la sortie tournent en

1 2

$$r = (-1)^1 \frac{Z_1 \cdot Z_3}{Z_2 \cdot Z_4} = -\frac{Z_1 \cdot Z_3}{Z_2 \cdot Z_4}$$

L'entrée et la sortie tournent en sens inverses.