
MASTER RESEARCH INTERNSHIP

MASTER THESIS

Narrative Intelligence for Debriefing

Author:
François AUGER

Supervisors:
Anne-Gwenn BOSSER

Cédric BUCHE
Martin DIEGUEZ

13th June 2019





Contents
1 Introduction 3

2 State of the art on sequential supervised learning 4
2.1 Sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Maximum Entropy Markov Models . . . . . . . . . . . . . . . . . . 5
2.4 Input-Output Hidden Markov Model . . . . . . . . . . . . . . . . . . 6
2.5 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical background 8
3.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Baum-Welch algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Contribution 12
4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Hyperparametrization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Conclusion 16

1



List of Figures
1 Architecture of the system proposed in [8] . . . . . . . . . . . . . . . 3
2 Selection elements in the sliding window algorithm. . . . . . . . . . . 5
3 Bayesian network of Hidden Markov Models and closely related prob-

abilistic models taken from [11]. . . . . . . . . . . . . . . . . . . . . 6
4 Markov Chain graph example . . . . . . . . . . . . . . . . . . . . . . 10
5 Bayesian network of a Hidden Markov Model . . . . . . . . . . . . . 11
6 HMM training on SWORD’s data set for several value of hidden states 13
7 HMM graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8 Markov Chain graph . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Markov Chain graph . . . . . . . . . . . . . . . . . . . . . . . . . . 17

List of Tables
1 Comparative table of probabilistic models for sequential data . . . . . 7

2



1 Introduction
The tool SWORD1, is used by the French army to perform virtual training simulations
which, thanks to the use of sophisticated mathematical models, are quite close to real
training scenarios.

After every virtual training, the participants are involved in a debriefing process in
which they discuss what happened, why and how the training can be improved in the
subsequent simulations. For this process they take advantage of the huge amount of
data generated by the simulator.

Information and the timing play a crucial role in the debriefing: as suggested in [1],
very detailed information make the participants loose their concentration and an inad-
equate timing may make them forget crucial information they used for making their
decisions. In order to meet such requirements, authors of [7, 8] proposed a tool for
turning the data resulting from the simulation into a causal graph [23] in which all the
actions triggered during the simulation and their cause-effect relations are represented.
The left part of Figure 1 presents the architecture of that system.

Figure 1: Architecture of the system proposed in [8]

This system exploits the use of Linear Logic [13, 14] (LL) for representing both
dynamic problems [12, 17, 10] and the notion of causality [9, 3, 6, 22, 23] in order
to generate such causal graph associated to the SWORD’s output. We will not go
into the details of this algorithm since it is not the purpose of this internship, we refer
the reader to [7, 8] for a more detailed presentation for this algorithm. However, the
resulting causal graph may contain very detailed information that complicates its un-
derstanding. The combination of such symbolic approach with some machine learning

1See https://masasim.com/sword/
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that simplifies the graph is a challenging problem that we will consider in this report.
In this report, I will explore how machine learning can contribute to improve the

proposal of [7]. More precisely, I will describe how machine learning techniques can
be used to simplify the output graph and, moreover, to detect (possible) anomalies
that may have occurred during the simulation. The idea behind this contribution is
to provide a method able to detect sequences of actions that are meaningful for the
participants (usually military experts) of the simulation while, at the same time, find
anomalies that, from a human point of view, may be unnoticed by the experts.

The reminder of this report is as follows. In Section 2 I survey several techniques of
machine learning for extracting information from sequential data. Then, in Section 3
I focused on Hidden Markov Models [20] (HMM), the machine learning approach I
will apply in this report. In Section 4 I present the main contributions of my internship
and I finish this report with the conclusions where I summarise my contribution and I
discuss about his limitations and future improvements.

2 State of the art on sequential supervised learning
Supervised Learning is a technique of Machine Learning in which the correct predic-
tion is given during the training so the model has just to bind the input (an observable in
a sequence) to the correct given output. When applied to sequential data, the resulting
framework is often called sequential supervised machine learning.

Due to the increasing number of digital information, we often encounter many
situations where it is necessary to extract information from sequential data such as
sequences of words in a text or speech, frames in a video or nucleotides in the DNA.
SWORD traces can be regarded as sequential data in which actions are sequentially
triggered.

Along this section we will consider the following supervised machine learning al-
gorithms for extracting information from sequential data [11]: Sliding Window, Hidden
Markov Model, Maximum Entropy Markov model and Input-Output Hidden Markov
Model, Conditional Random Fields and Recurrent Neural Networks. For each of them,
we will focus on pros, cons and applications. Finally, based on the aforementioned
aspects of these models, we will discuss the most suitable method to be applied in our
context.

2.1 Sliding window
The Sliding Window is a machine learning method for sequential supervised learning.
Given a window w ∈ N, a classifier hw is defined as a mapping from the subsequence
determined by w to the predicted data. For instance, let a0, · · · , an be a sequence and
let w be a window, for a given i satifying that 0 ≤ i ≤ n, hw will predict a value from
the elements in the interval

(
i− w

2 , i+
w
2

)
, as shown in Figure 2.

As its main advantage, authors of [11] suggest that this algorithm converts the
sequential supervised learning problem into a simple supervised learning one whose
input is the current observable together with its w-neighborhood. Therefore, it allows
any normal classifier to be applied. The evident drawback relies on the fact that the

4



a0, · · · , ai−w
2
, · · · ,︸ ︷︷ ︸

w
2

↓
ai, · · · ai+w

2︸ ︷︷ ︸
w
2

, · · · , an.

Figure 2: Selection elements in the sliding window algorithm.

sliding window does not take advantage of the correlations among the inputs and the
neighborhood predictions. To solve this problem, a new technique called recurrent
sliding window has been proposed in [4]. This new extension enhances sliding window
with elements previously predicted by hw. As for applications, the sliding window
technique was successfully applied in [2] to detect change points in time series.

2.2 Hidden Markov Model
A Hidden Markov Model is a probabilistic model used to predict a sequence of hid-
den states after receiving an input sequence of observables. The training of the hidden
Markov model is done by computing the backward-forward algorithm. The Hidden
Markov Model is one of the oldest probabilistic model for sequential supervised learn-
ing and was used in many applications with a lot of variations. HMMs are often called
generative models because of the conditional probability of having the observable X
given a target Y (see Figure 3).

This technique is used to learn Markovian processes, those whose probability of
being at a given state a at time t depends on being observed at a and the probability of
reaching a from another state at t − 1. This means that HMM cannot cannot predict
values based on historical data2. This inconvenient, can be overcome by using a n-
order Markov model, but the computational cost may be very high. The HMM was
successfully used in [18] on protein sequences for predicting transmembrane helices.

2.3 Maximum Entropy Markov Models
A Maximum Entropy Markov Model (MEMM) is also a probabilistic model in which
the probability p(yt|yt−1, xt) is given by an exponential equation. These kind of mod-
els are trained using maximum entropy algorithms such as Generalized Iterative Scal-
ing [21] (GIS), which is applied for each pairs < observable, state > at each step.
Contrary to HMMs, Maximum Entropy Markov Models are known as conditional /
discriminative models because of the conditional probability of having the target Y
given the observable X . The difference between HMMs and MEMMs is shown in
Figure 3b. While in the HMM of Figure 3a edges go from hidden states to observables,
in the HEMM of Figure 3b edges go from observables to hidden states.

Maximum Entropy Markov Models were created to overcome the problem of the
hidden Markov model: HMMs do not permit to seize long distance interactions between

2This property is called d-separation and it says that, having 3 variables X,Y and Z, if knowledge about
X gives you no extra information about Y once you have knowledge of Z, you have X and Y d-separated.
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y1 y2 y3

x1 x2 x3

(a) Hidden Markov Model

y1 y2 y3

x1 x2 x3

(b) Maximum Entropy Markov Models

y1 y2 y3

s1 s2 s3

x1 x2 x3

(c) Input Output Markov Model

y1 y2 y3

x1 x2 x3

(d) Conditional Random Field

Figure 3: Bayesian network of Hidden Markov Models and closely related probabilistic models
taken from [11].

hidden states. However, this technique presents some disadvantages. For instance, the
label bias problem [11] implies that “the total probability mass received by yt−1 (based
on x1, ..., xt−1 ) must be transmitted to labels yt at time t regardless of the value of xt”.
Consequently, the only role of xt is to influence which of the labels receive more of
the probability at time t. In particular, all of the probability mass must be passed on to
some yt even if xt is completely incompatible with yt .

As for application, in [21], MEMMs and several HMMs were used to classify lines
of FAQ webpage in 4 categories: head, question, answer and tail. The result of the
comparision between MEMMs and HMMs proved to be favorable for the first method
with a segmentation precision of 0.867 against 0.413 obtained for the HMMs.

2.4 Input-Output Hidden Markov Model
Input Output Hidden Markov Model were introduced in [5]. As said in the paper: ”The
architecture can be interpreted as a statistical model and can be trained by the EM or
generalized EM (GEM) algorithms (Dempster et al., 1977), considering the internal
state trajectories as missing data”. The model learns to map an input sequence of data
to an output sequence of data. The IOHMM can be modeled as a recurrent architecture
composed with a set of state networks (s in Figure 3 and a set of output networks y
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Machine Learn-
ing Model

Advantages Limitations

Sliding Window Convert sequential su-
pervised learning to nor-
mal sequential learning

Can’t see correlation
between nearby yt

Hidden Markov Model Quite popular model,
very efficient training

Can’t capture long
distance relation-
ship interaction

Input-Output Hidden
Markov Model

Supports long dis-
tance interactions

Label bias problem

Maximum Entropy
Hidden Markov Model

Supports long dis-
tance interactions

Label bias problem

Conditional Ran-
dom Field

Overcome the label
bias problem

Slow convergence

Recurrent Neural
Network

Good results, very
popular

Requires huge
amount of data

Table 1: Comparative table of probabilistic models for sequential data

in Figure 3). The output distribution of the time t + 1 is estimated with the inputs
and state distribution of time t. Input-Output Hidden Markov Model is able as the
MEMMs to catch long range interactions. The limitation of the IOHMM is the label
bias problem discussed in detail in the limitations section of MEMMs. Input Output
Hidden Markov Model was successfully used in [15] for the prediction of the electricity
prices in the particular case of the Spanish Spot Market. The physical explanatory
variables used as inputs for the IOHMM were time series of past energy production
like nuclear generation, hydro generation, thermal generation.

2.5 Conditional Random Fields
Conditional Random Fields model is a generative probabilistic model very similar to
MEMMs. As said in [19], ”The critical difference between CRFs and MEMMs is that
a MEMM uses per-state exponential models for the conditional probabilities of next
states given the current state, while a CRF has a single exponential model for the joint
probability of the entire sequence of labels given the observation sequence”. The main
advantage of the Conditional Random Fields model is to solve the label bias problem.
A limitation of the Conditional Random Fields is the slow convergence of the training
algorithm. The expensive training is what allows CRF to solve the label bias problem.
Conditional Random Fields were applied in [19] among Hidden Markov Models and
Maximum Entropy Markov Models on a part-of-speech tagging problem.
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2.6 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are models for sequential data. There are several
types of RNNs like Deep Long Short-term Memory introduced by G. Hinton in [16],
Long Short Term Memory (LSTM) and others. A standard RNNs takes as input a
sequence of data, computes a hidden vector sequence and outputs a vector sequence
by iterations. To avoid overfitting, we traditionally use regularisation methods like
early stopping and weight noise. Overfitting is observed when a machine learning
model fits too closely the training data while it will not be able to generalise to unseen
data. An evident advantage of using RNNs is the number of well known frameworks
offering very good API to deal with RNNs. The popularity of RNNs these last years
is obviously correlated with the very good results obtained by neural networks. One
main issue when dealing with RNNs is the quantity of data required by the neural
network to obtained good results. Several kind of neural networks were tested on
the TIMIT corpus in [16] in phoneme recognition. The training was conducted on
462 speaker set records, with a separate set of 50 speakers for early stopping. The
RNNs were tested with different kind of training method (CTC, Transducer, Pretrained
Transducer), different number of hidden levels (between 1 and 5), and the number of
LSTM cells in each hidden layer.

2.7 Discussion
Along this section, I presented six machine learning approaches to deal with sequential
data. Among them, Hidden Markov Model and Recurrent Neural Network are very
popular and studied. These models are supported by efficient libraries which make
their use easy. For other methods, like MEMMs, the lack of available implementations
made their use less frequent.

As we presented along this section, all models have their advantages and limita-
tions and some models are more suitable to solve a concrete type of problems rather
than others. For instance, we do not need Maximum Entropy Markov Model if we are
not looking for long distance interactions within the sequences. Furthermore, the Con-
ditional Random Field approach does not have the label bias problem of the MEMM.
Last but not least, we must take into account the size of the data set we work with.
From this point of view, Recurrent Neural Network approaches do not perform well on
small data sets.

Regarding the size of our data set, the availability of implementation and the ad-
vantages of Hidden Markov Models with respect to other approaches, we propose this
method to tackle our problem.

3 Theoretical background
As we saw in Section 2, there exists several methods to learn a sequence of actions.
Among them, Markov models, which are a specific type of probabilistic models, are
capable of learning sequences of states by using conditional probabilities. These mod-
els have been applied on temporal data such as climatic, financial, multimedia data or
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text corpus. In this section we describe in detail those models.

3.1 Markov Chain
A Markov Chain is a stochastic process where the probability of moving to the next
state depends on the current state. A Markov Chain has to satisfy the Markov property
which says that the conditional probability distribution of the next state only depends
on the current state, and not on the past ones, also called as the memoryless property of
a stochastic process because everything is encoded to the present and so we don’t need
knowledge of the past states to predict the future. In a more formal way, let’s assume
the Markov chain composed of a sequence of states: X0, X1, ..., Xn. The Markov
Property is given by the formula:

p(xi|x0, · · · , xi−1) = p(xi|xi−1).

Consequently, the probability of having the Markov chain is:

p(x0, ..., xn) = p(x0)p(x1|x0)p(x2|x1) · · · p(xn|xn−1).

Figure 4 represents the graph of a Markov chain used to describe how we dress
everyday, which can be seen as a Markovian process. One day, we can dress with casual
wear, semi-casual wear or winter apparel according to the weather or our wishes. We
can consider this model as a 3 states Markov chain. Then, the transition probability
is given by the edges between the states. For instance, the probability of dressing
with casual wear after a winter apparel day is 0.05, and the probability of dressing with
semi-casual after a casual wear day is 0.3. In this example, the parameters of our model
(the transition probabilities) are already given, so we are ready to predict a sequence of
clothing with our Markov chain. In some cases, we have to compute the parameters of
our model. This is done with MLE (Maximum Likelihood Estimation).

The Maximum Likelihood Estimation (MLE) is used to estimate the parameters of
a model, in our case, the transition matrix of our Markov chain. To do it, the MLE is
computed and the parameters are updated on each sequence.

3.2 Hidden Markov Model
Hidden Markov Model is a probabilistic model that can learn sequence of hidden states
thanks to a sequence of observables. An observable is whatever that can be observed
by the model and gives information about the current hidden state. Because states are
not directly observed by the model, the probability that the model is in a state depends
on the probability that the observable is seen at the current state, and of the probability
that the model is in the current state knowing the previous state of the system at the
time t−1 (Markov property). Given the sequence of hidden states x1, x2, ..xn, and the
sequence of observables y1, y2, ...yn, the probability to be in the hidden state xn with
the observable yn at the time t is given by the following formula:

p(y1, ..., yn, x1, ...xn) = p(x1)p(y1|x1).p(x2)p(y2|x2)...p(xn)p(yn|xn).

9
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Figure 4: Markov Chain graph example

Figure 5 represents the Bayesian network of a Hidden Markov Model giving the weather
from the kind of dress we wear. The hidden states of the model are given by the ran-
dom variable X(t) with X(t) ∈ {Hot,Mild, Cold}. Then the random variable Y (t)
represents observables of the system with

Y (t) ∈ {Casual wear, Semi casual wear,Winter apparel}.

The emission matrix B gives the probability of seeing the observable Y (t) when the
system is in the hidden state X(t) at time t. For instance, the probability of having
Casualwear when we are in Hot is: p(Casualwear|Hot) = 0.8.

B =

0.8 0.2 0.0
0.4 0.5 0.1
0.1 0.2 0.7


As in the Markov chain, the transition matrix A contains the probability to enter in
a state according to the previous state. So when I am in the hidden state Hot, the
probability to enter in the hidden state Mild is: p(Mild|Hot) = 0.5.

A =

0.3 0.5 0.2
0.3 0.5 0.2
0.2 0.4 0.4


The last parameter of the Hidden Markov Model is the initial probability distribu-

tion π of the model which gives for each state the probability to be in it at the time 0.
π(i) = (x1 = i) with i ∈ 1, 2, ..., n.
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Figure 5: Bayesian network of a Hidden Markov Model

3.3 Baum-Welch algorithm
The forward-backward algorithm is used to learn the parameters of the Hidden Markov
Model which are: the emission matrix, the transition matrix and some time the initial
state distributions. To do it, the algorithm will use the entire data set containing a
number of Markov sequences where each sequence is composed of observables.

The forward procedure computes the probability of being in the hidden state xk
given the sequence of previously seen observables y1, y2, .., yk. The formula is:

αk(xk) =

m∑
xk−1=1

p(yk|xk)p(xk|xk−1)αk−1(xk−1), (1)

for k ∈ [2, n].
The backward procedure computes the probability of seeing the sequence yk+1, · · · , yn

given the hidden state xk. The formula is the following:

βk(xk) =

m∑
xk−1=1

βk+1(xk+1)p(yk+1|xk+1)p(xk+1|xk) (2)

for k = 1, · · · , n− 1.
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4 Contribution
The initial goal was to train a Hidden Markov Model on the graph obtained by the ap-
proach of [8] and to compare the resulting Bayesian Network presented in Section 3.2
with the original graph.

Since the analysis of such Bayesian Network provides us with the information con-
tained in the transition and emission matrix, we can learn useful information about
the graph produced by the linear logic approach of [8]. For instance, things we could
learn are the most common transition between the actions as well as eventualities and
abnormalities produced in such sequences. Furthermore, it is also possible to find the
semantics behind the obtained hidden states. This process is known as unsupervised
sequential learning because the number of hidden states in the model is unknown so
finding it is the main goal of the learning approach.

As the development of the project was in Python, it was interesting to look for
a Python library implementing probabilistic models like Hidden Markov Model and
Markov Chain. The library finally selected was Pomegranate3 because it offers a very
complete API with a detailed documentation. The library is written in C with a python
wrapper. Pomegranate is a library specialized in probabilistic models such as Bayesian
Networks, and Mixture Models. In our case, we used the Hidden Markov Chain class
which have several methods to train the HMM such as the Baum-Welch algorithm.
Callbacks are available, this allows us to keep an eye on the training step. I also modi-
fied the library in a way that permit us to follow the learning step of the HMM with the
validation set. It allows us to be sure that there is no overfitting during the learning of
the parameters.

4.1 Data set
Two data sets were used for this study, the first one is from the software SWORD.
And the second one is from the Protein Data Bank. Unfortunately, the linear logic
approach (still under construction) used to generate the graph did not work. The main
reason is that the grounding step (in Prolog) did not work cause of the huge amount
of data. Finally, the data set was generated in Python with similar rules as describe
in linear logic section. Thus a data set was created thanks to a workaround, it is not
considered as the final data set. The SWORD’s action graph is composed of more than
200 sequences, where the length of each sequence is between 1 and 350 actions with a
mean length of 100 actions per sequence. An observable (action), can take 7 possible
different values between 1 and 7. The Protein Data Bank (PDB) data set comes from
the Data Science Challenge Website Kaggle. This data set is composed of more than
400 000 DNA sequences of different macro molecules from protein to virus. Because
we didn’t need the entire data set to train and test our HMM, we only took a subset of
protein sequences, where each protein sequence has a length between 2 and 5037 with
a mean of 266 element per sequence. The alphabet used to describe a protein sequence
is composed of 23 letters. We only took 200 sequences in this set of data to test our
HMM, more sequences would only increase the accuracy of the training but would also

3See https://pomegranate.readthedocs.io/en/latest/index.html
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take more time for training our HMM.

(a) 6 hidden states HMM training on k-fold 2 (b) 6 hidden states HMM training on k-fold 7

(c) 5 hidden states HMM training on k-fold 2 (d) 5 hidden states HMM training on k-fold 7

Figure 6: HMM training on SWORD’s data set for several value of hidden states

4.2 Hyperparametrization
The main parameter in Hidden Markov Models is the number of hidden states. In-
creasing the number of hidden states will give more chance to fit the data, but will
also increase the risk of having overfitting as said in [15]. A such HMM with a lot of
hidden states will obviously become more complex, and so, it will be more difficult
to interpret. The computational complexity of the HMM is directly dependant of the
number of hidden states. The goal when trying to guess the number of hidden states is
to find a good model without overfitting. The training of the HMM was conducted for
different values of hidden states (between 2 and 11). And for each of these HMMs, a
10 fold cross validation was conducted. In our case, because each sequence of actions
was of equal value, no weights were added to emphasise or inhibit the input. Also
because it was unsupervised learning, no label were required. Other parameters like

13



pseudo-count or inertia were ignored. The training was done using the Baum-Welch
algorithm with the Pomegranate Python Library on the SWORD’s data set and on the
Protein Data Bank data set. On the PDB data set, the training needs many epochs
(around 400 epochs depending of the cross validation set and the number of hidden
states) before reaching the optimal log probability. The time required to get the best of
the model was not surprising as the sequences were rather long. The training was also
done with a 10-fold cross-validation and 2 to 11 hidden states HMM were trained. Fig-
ure 6 shows the training of 5 and 6 hidden states HMM on 2 different fold. The number
of epochs required to converge is most of the time around 30 epochs which is not a lot
in comparison with the training on the PDB data set. This could be explained by the
fact that the data set is rather small. The training with 6 hidden states gives a better log
probability for the 7th-fold than the 5 hidden states HMM for the same fold, we can
observe an improvement from -31.5 to -29 for the 7th test fold but with a regression
from to -24 to -25 for the 7th training fold between the 5 hidden states HMM and the 6
hidden states HMM. Though, there is a clear overfitting on the 2nd fold as we can see
on 6a. All trainings on this fold with a number of 6 hidden states or a higher value give
overfitting. Finally, the number of hidden states selected for the Hidden Markov Model
was 5, it allows us to have the best of both world with a good enough log probability
without suffering overfitting.

4.3 Results
The goal of the study was to analyse the HMM graph obtained after the training part
and see how the HMM learned from the data. Figure 7 shows the Bayesian network of
our 5 hidden states HMM trained directly from the SWORD’s data set. On this graph,
we can see 5 hidden states s0 to s4, and 6 actions from SWORD. The probability of
entering in s0 for the first state is very high (0.9548) and that the action order move
is only observed by s0. This perfectly reflects the data set where nearly all sequences
begin by the action order move. There is no surprise as a unit always receives an
order to move at the beginning of a battle. Hidden states s4 and s3 have a very high
probability (0.9) of staying in the same state which is the exact opposite of s2 and s1.
The emission matrix probabilities shows that the probability of seeing an order move
when we are in s0 is 0.76, and 0.24 for move completed which means that the HMM
associated the two actions together. This is logical as we can consider that an action
move (represented by s0) can be split in 2 actions which are an order move (order
given to the unit with a specific destination) followed by an action complete move
saying that the mission move was successfully executed. What is interesting here is
that normally an action move in SWORD is decomposed as the following: an action
order move,followed by a pathfind and then an action move completed. But here
the pathfind is not at all considered as being a part of the hidden state s0. Instead, we
have the states s1 and s3 which have a very high probability to observe a pathfind
(0.99 for s1 and 0.94 for s3). s1 has a good probability (0.83) to lead to s2 and 2 to lead
to s1 (0.96), s2 being the main generator of the observable partial complete move.
Here again we are not surprised as a partial complete move happens often after a
pathfind. Even if at first sight, it’s rather strange having 2 hidden states generating
the pathfind, we have in fact one (s1) hidden state binded to pathfind which are
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immediately followed by partial complete move and one (s3) hidden state which
detects loops of pathfind (in the sequences, there is loops of pathfind which comes
from the log of SWORD). The hidden state s4 has probabilities of seeing many ac-
tions, 0.1 for move completed, 0.13 for pathfind and 0.71 for start firing. In fact,
it seems that the HMM enter in the state s4 when it sees an action start firing and as-
sociates all the previous and following actions to this action. Like a pattern containing
the specific action start firing.

s0 0.954 s1 s2 s30.005 s40.041

order
move

pathfind start
firing

detect
block

partial
complete
move

move
completed

.65

.15

.18

.02

.02

.10

.83

.04

.002

.96

.01

.0004

.02

.06
.9

.01

.03

.04

.02

.9

.76

.24

.999 .0002.03 .96.94

.06

.13 .71 .01 .02 .10

Figure 7: HMM graph

4.4 Anomaly detection
One purpose of the Markov chain is to compute the probability of having an entire
sequence (of actions in our case). This can be done by computing the log probability
after training the Markov Chain. For instance, let us assume that we have the follow-
ing sequence of actions: Order move, Partial move, Explosion,... and the goal is to
check if this sequence has a high probability of appearance. Because we work with log
probability, the bigger is the log probability the higher is the probability of seeing the
sequence.

The training of the Markov chain was done on the SWORD’s data set. The paramet-
ers of the Markov Chain was found according to the Maximum Likelihood Estimation.
Figure 8 represents the Bayesian network of the Markov Chain after the training with
the transition probabilities written on the edges.
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Figure 8: Markov Chain graph

After the training part, the Markov Chain was ready to compute what we call the
log probability of a sequence. The log probability of a single sequence can tell if the se-
quence has a high probability of appearance according to the parameters of the model.
Because the log probability (described by the Markov property in the previous section)
is the probability of having the first action, multiplied by the probability of having the
second one knowing the first one multiplied by the third etc. The log probability of a
sequence decrease with its length. Furthermore, to be sure to get the right log probabil-
ity independently of the length of the sequence, I divide each sequence’s log probability
by the length of the sequence. Then the purpose was to find the detection threshold.
This was a tricky part because finding the good threshold is not obvious. Having a too
low threshold will take normal sequence for not normal, and on the other hand, a too
high threshold will lead to no detection at all which is not what we want. Figure 9 rep-
resents the box plot of the mean log probability of the sword’s action sequences. We
can notice the median at -0.76, and outlier values begin under -2.05. With a threshold
at -2, the number of sequence detected as rare is 23 on the 283 sequences of the data
set. This only represent 8% of the data set.

5 Conclusion
In this study, we presented a hybrid system (using linear logic and machine learning) to
extract causal information from the training simulator SWORD. While the LL approach
was used to generate actions from this log file, machine learning was applied to this
graph in order to find anomalies and possible simplifications. The problem we faced

16



Figure 9: Markov Chain graph
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concerns the huge amount of data produced by SWORD, which makes the debriefing
process more complicated for the users.

In order to cope with this problem, we proposed a Hidden Markov Model, which
is trained from this graph of actions in an unsupervised way. The final Hidden Markov
Model will be able to accept sequences of actions with an associated probability. This
approach would help the participants in a simulation in two different ways: it will help
them to understand, from a statistical point of view, possible sequences that always go
together and, moreover, identify sequences with low probability and associate them to
“potential” anomalies.

In our examples, the HMM we considered was composed of 5 hidden states and
thanks to it we could learnt many execution patterns from the data like subsequences
of actions containing an action start firing or succession of actions in the graph. A
Markov Chain was also used on the sequence of actions to detect sequences with a low
log probability.

Limitations one limitation of the Hidden Markov Model used in the previous section
also discussed in the state of the art section is that HMMs cannot see long distance
interaction between the states. In our case, we observed that our HMM got lots of
regularities from the data, but we maybe missed some of them. An other limitation
I noticed is the limited amount of data which constraints the model to use. Also, the
accuracy of the model is correlated with the amount of data available. Then, the fact
of working from the output of a previous algorithm can lead to a bias problem as the
actions were elaborated by a human.

Future work several things could be done to improve the work. First we could try
machine learning directly on the logs. Machine learning models like Long Short-Term
Memory (LSTM) are well suited to deal with text data. The amount of text data which
represents more than 300MB of text data per simulation will be far enough to apply
neural networks method. We could then generate a graph from the logs without having
to use the linear logic approach. Unfortunately, the SWORD’s action graph generated
by the linear logic couldn’t be generated at the time of the realistic example. Even
though a workaround was used to generated the actions from the logs, it would be
interesting to accomplish it using Prolog with the linear logic approach. Using other
machine learning models on the graph is also an other option and could potentially
improve what we obtained with the HMM if for example, it exists long distance inter-
actions that we didn’t catch with the HMM. If more data can be generated, Recurrent
Neural Network models would be a good start. Furthermore, we currently defined 6 ac-
tions from the logs, and it could be interesting to elaborate more actions. For instance,
we thought about new actions like unit detection when a unit detect an enemy unit.
We should then see if the HMM could get new pattern from the data. Future work on
the anomaly detection function for finding the best threshold would be interesting to
do. We could use it to detect rare sequence and learn more information from the graph.
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