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Introduction

Overview of perception tasks.

Presentation of general workflow for detection and segmentation.

Presentation of deep learning applied to 3D point cloud.
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Sensors and data
Sensors

Sensor Output Range Strength Weakness

Camera Image <30m Precise, easily
available

Lack distance
information

RGB-D Camera RGB-D Image <3m Cheap Short range
LiDAR Point cloud >5m Precise, High

resolution
Cost

Table: Sensors comparison[3]

Methods allowing transformation between different output exists (ex:
image to point cloud). Beware, transformation often induces a lack of
information.
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Sensors and data
Data

Figure: First line : Pictures and associated depth canal [5] Second line : Point
cloud, voxelising, voxels (voxel size : 0.1m)
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Sensors and data
Deep learning

Deep learning is a subset of machine learning, focused on neural network
”with more than two layers” with the following characteristics :

More neurons than previous networks

More complex ways of connecting layers and neurons

Higher need for computational power

Automatic feature extraction

Deep Learning A Practitioner’s Approach, Patterson J. and Gibson A. [7]
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Sensors and data
Point cloud specificity

Automatic feature extraction as a pillar of deep learning.

Convolution as a feature extraction method.

How to extract features from point clouds, an irregular, unordered data
format ?
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Sensors and data
Point Cloud Feature Extraction

Point Cloud
Feature Extraction

Projection-
based

2D Projec-
tions[2][12]

Voxels[6]

Point-based

MLP[8][9]

Convolution[10]

Graph[11]

Point cloud semantic segmentation methods taxonomy[4]
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Perception tasks

Detection : Finding object(s) of interest in perceived data.

Segmentation : Dividing perceived data in its different component.

Figure: Detection and segmentation examples.
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Perception techniques
Metrics

True Positive (TP).

True Negative (TN).

False Positive (FP).

False Negative (FN).

Precision =
TP

TP + FN

Recall =
TP

TP + TN

Average Precision =
TP + TN

TP + TN + FP + FN

Intersection over Union =
TP

TP + FP + FN

For detection, others metrics exist
and should be studied on a case by
case basis depending on the dataset
used.
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Detection
Traditional methods

Detection : Finding object(s) of interest in perceived data.

What to do in the case of simple shapes ?
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Detection
Traditional methods

Model-fitting : detecting a known object.

Work well in controlled environment.

Use a generalised Hough transform or RANSAC.

Figure: Model-fitting workflow
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Detection
Traditional methods

Raw cloud Fitted primitive

Primitive, such as plane or cylinder, can also be detected with
classical methods, such as RANSAC.
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Detection
Deep learning methods [3]

Figure: General detection workflow.
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Detection
Deep learning methods

Single Pass Dual Pass

Fast Precise
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Detection
Deep learning methods

Features
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Segmentation
Types of segmentation

Raw point cloud Semantic Segmentation

Instance Segmentation Panoptic Segmentation
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Segmentation
Types of segmentation

1 State of the art use deep learning.

2 Simple cases of instance segmentation can use traditional methods
[1].
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Segmentation
Traditional Methods-Graph Cut Normalised
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Segmentation
Traditional Methods-KMeans

Optimisation method.

Difficulty in fixing the number of classes.
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Segmentation
Traditional Methods-Watershed

Optimisation method.

Consider image as a topological surface.

Sensible to initial conditions.
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Segmentation
Deep learning methods

Point

cloud

Segmented

point

cloud

Skip Link

Downsampling kernel

Input/Output

Upsampling kernel

Decision network

Negative log likelihood loss is used
for training.

Downsampling can use a mix of
convolutional and pooling layer.

Upsampling can use a mix of
convolutional and deconvolutional
layer.

Skip link preserve high resolution
information.
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Segmentation
Deep learning methods

Downsampling

Increasing number of features

Decreasing data resolution
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Segmentation
Deep learning methods

+ + +

Skip link Skip link Skip link

Upsampling

Decreasing number of features

Increasing data resolution

Injection of data lost during downsampling
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Real time perception

Partial Convolution
Sparse Convolution

Real time application need to make decision in less than 0.1s.

Simple data structure is prevalent in the 3D case.

Tracking is often used to improve performance along several frame.
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Sensor Fusion

Different data bring different kind of information.

Sensor fusion try to take advantage of information provided by
different sensors.

Figure: Common sensor fusion workflow
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