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Introduction

@ Overview of perception tasks.
@ Presentation of general workflow for detection and segmentation.

@ Presentation of deep learning applied to 3D point cloud.
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Sensors and data

Sensors

Sensor ‘ Output Range ‘ Strength ‘ Weakness

Camera Image <30m | Precise, easily | Lack distance
available information

RGB-D Camera | RGB-D Image | <3m | Cheap Short range

LiDAR Point cloud >5m | Precise, High | Cost
resolution

Table: Sensors comparison|3]

Methods allowing transformation between different output exists (ex:
image to point cloud). Beware, transformation often induces a lack of
information.
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Sensors and data
Data

Figure: First line : Pictures and associated depth canal [5] Second line : Point
cloud, voxelising, voxels (voxel size : 0.1m)
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Sensors and data

Deep learning

Deep learning is a subset of machine learning, focused on neural network
"with more than two layers” with the following characteristics :

@ More neurons than previous networks

@ More complex ways of connecting layers and neurons
@ Higher need for computational power

@ Automatic feature extraction

Deep Learning A Practitioner's Approach, Patterson J. and Gibson A. [7]
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Sensors and data

Point cloud specificity

@ Automatic feature extraction as a pillar of deep learning.

@ Convolution as a feature extraction method.
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How to extract features from point clouds, an irregular, unordered data
format ?
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Sensors and data

Point Cloud Feature Extraction

2D Projec-
tions[2][12]
Projection- | | Voxels[6]
based

/

Point Cloud
Feature Extraction MLP(8][9]
D‘
\ N
’ Point-based }—»Convolution[lO] = x°
Graph[11]

Point cloud semantic segmentation methods taxonomy/[4]
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Perception tasks

@ Detection : Finding object(s) of interest in perceived data.

@ Segmentation : Dividing perceived data in its different component.

Figure: Detection and segmentation examples.
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Perception techniques

Metrics

@ True Positive (TP).
@ True Negative (TN).
@ False Positive (FP).
@ False Negative (FN).

For detection, others metrics exist
and should be studied on a case by
case basis depending on the dataset
used.

L. TP
Precision = ——
TP + FN
Recall = L
TP+ TN
L. TP+ TN
Average Precision =
TP + TN + FP + FN
. , TP
Intersection over Union = ——
TP + FP + FN

N %
Intersection

loU =

B %
Prediction
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Detection

Traditional methods

@ Detection : Finding object(s) of interest in perceived data.

@ What to do in the case of simple shapes 7
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Detection

Traditional methods

@ Model-fitting : detecting a known object.
@ Work well in controlled environment.
@ Use a generalised Hough transform or RANSAC.

Sample points

Fits Points Qutput

Sample points

Figure: Model-fitting workflow
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Detection

Traditional methods

Primitive, such as plane or cylinder, can also be detected with
classical methods, such as RANSAC.

Raw cloud Fitted primitive
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Detection

Deep learning methods [3]

Inout Feature Detection Output
P Extraction Network p

>
PR
]
>
e

Network ﬁ ’7 Optional

Figure: General detection workflow.
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Detection

Deep learning methods

Fast Precise
Single Pass Dual Pass
Dual Pass

2 Predictions

Qo‘-’ refinement
<€
Feature Detection
Input Extraction Network Output

Single Pass
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Detection

Deep learning methods

Features
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Segmentation

Types of segmentation

Raw point cloud Semantic Segmentation

s

Instance Segmentation  Panoptic Segmentation
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Segmentation

Types of segmentation

@ State of the art use deep learning.

@ Simple cases of instance segmentation can use traditional methods

[1].
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Segmentation

Traditional Methods-Graph Cut Normalised

Sur-

segmentation
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Segmentation
Traditional Methods-KMeans

@ Optimisation method.

@ Difficulty in fixing the number of classes.
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Segmentation
Traditional Methods-Watershed

@ Optimisation method.
o Consider image as a topological surface.

@ Sensible to initial conditions.
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Segmentation

Deep learning methods

Segmented
Point point
cloud cloud

Negative log likelihood loss is used
for training.

Downsampling can use a mix of
convolutional and pooling layer.
Upsampling can use a mix of
convolutional and deconvolutional
layer.

Skip link preserve high resolution
information.

[] Downsampling kernel Upsampling kernel

[] Input/Output [ | Decision network
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Segmentation

Deep learning methods

Downsampling

Increasing number of features
Decreasing data resolution
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Segmentation

Deep learning methods

Upsampling
Injection of data lost during downsampling

Skip link Skip link Skip link

I I I
I I I
I I I

Increasing data resolution
Decreasing number of features
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Real time perception

] ) Sparse Convolution
Partial Convolution

VS

@ Real time application need to make decision in less than 0.1s.
@ Simple data structure is prevalent in the 3D case.

@ Tracking is often used to improve performance along several frame.
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Sensor Fusion

o Different data bring different kind of information.

@ Sensor fusion try to take advantage of information provided by
different sensors.

Feature
Data 1 Extraction
Decision layer > Output
Feature
Data 2 Extraction

Figure: Common sensor fusion workflow
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