Fast Multi-Scale fHOG Feature Extraction
Using Histogram Downsampling

Authors removed for blind review

Abstract

We describe an adaptive fHOG feature pyramid con-
struction scheme based on histogram downsampling.
Varying the pyramid level to which the scheme is ap-
plied gives control over the trade-off between precision
or speed. We evaluate the scheme on a modern com-
puter and on a NAO humanoid robot in the context of
the RoboCup competition, i.e. robot and soccer ball de-
tection, in which we obtain 1.57x and 1.68x increase
on PC and robot respectively in pyramid construction
speed without any loss in detection performance rela-
tive to the baseline that does not use feature approxima-
tion. The scheme can be adapted to increase speed while
trading off precision until it reaches the conditions of a
state of the art feature approximation method.

Object detection has seen tremendous progress in the past
years, which stemmed both from hand-crafted features and
the relatively recent convolutional neural networks. As
CPUs become more and more powerful and with the advent
of cheaper GPU processing, some subfields witnessed super-
human image recognition accuracy.

Our focus is however on conditions where the system is
required to function with low computational resources. Such
conditions can be found in the Standard Platform League
(SPL) of the RoboCup soccer competition. Here, teams must
use the commercially available SoftBank NAO humanoid
robot without hardware modifications. The resources avail-
able in this setup are an Intel Atom 1.6GHz processor with
one thread and 1GB of RAM. Although sufficient for vi-
sion, these resources must be shared by several processes to
perform locomotion and strategic behavior necessary for the
soccer match, hence in reality, vision can only account for
roughly 5% CPU when the robot is in motion.

The main tasks for computer vision in this competition
are the detection of lines, goal posts, the ball and other robots
(teammates and opponents). For humanoid detection we turn
to the subfield of pedestrian detection, where Histograms
of Oriented Gradients (HOG) continue to play an important
role since their invention in 2005 (Dalal and Triggs 2005).
HOG consists in dividing an image into cells, computing
the gradient of each cell, binning gradients into a histogram
of main orientations and finally normalizing over blocks

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of cells to produce features (originally of 36-dimensions)
that are used for training a Support Vector Machine (SVM)
classifier over a sliding window. Later, (Felzenszwalb et al.
2010) introduced a refined version of HOG features (com-
monly referred to as Felzenswalb HOG or fHOG) which
proved more robust for pedestrian but also generic object
detection. Despite its high popularity however, HOG-like
(HOG, fHOG, or other variants) feature extraction is known
to be slow.

While many other flavors of object detectors have been
proposed, most combine HOG-like features with other types
to obtain better results under different conditions. Our main
focus is to accelerate fHOG feature extraction in order for
it to run on a robotic platform with low computational re-
sources, while maximizing detection precision.

We first discuss existing work on feature approximation
and how our work differs from the state of the art meth-
ods. We then present a series of evaluations on a modern
computer (Intel Core i7, 2.60GHz 6MB) to observe how
our choices have an impact on detection quality and execu-
tion speed. All results are obtained using a single execution
thread and averaged over multiple runs to ensure validity.
From these evaluations we make several observations that
lead to an adaptive scheme that gives control over the trade-
off between average precision and execution speed. Finally
we validate the results on the chosen robotic platform, where
we obtain higher execution time compared with the modern
computer as expected, due to the lower quality processor, but
still observe significant improvement relative to the baseline.

Related work

Our work falls in the concept of feature approximation, no-
tably used by (Dolldr, Belongie, and Perona 2010) to signifi-
cantly increase the speed of the feature pyramid construction
for non scale invariant features like HOG. The main intuition
is that instead of downscaling the image and extracting fea-
tures at each level of the pyramid, intermediary levels could
be approximated using nearby feature maps.

Successive image down-sampling and calculating features
at each pyramid level is computationally expensive. Taking
advantage of the generally fractal structure of natural im-
ages, it is possible to obtain similar performance by only
downsampling and computing the features for each halved
image; i.e. at each octave (Dollér et al. 2014). In-between,

the features are approximated (upsampled and downsam-
pled) from the ones directly calculated at each octave.

Regarding the context of application, object detection in
the RoboCup Soccer competition (standard platform league)
has been achieved with (generally manually tuned) detec-
tors based on color segmentation (Khandelwal et al. 2010)
or color histograms (Metzler, Nieuwenhuisen, and Behnke
2011), statistical modeling (Brandao, Veloso, and Costeira
2011), line detection, rough shapes (Budden et al. 2012), or
simply as non-green patches which differentiate themselves
from the green football field (Gudi et al. 2013).

In our experiments, we use the object detector pro-
vided by Dlib (King 2009) which uses the well known
31-dimensional feature extraction method described by
(Felzenszwalb et al. 2010) (fHOG) together with Max-
Margin Object Detection (MMOD) (King 2015) which im-
proves training efficiency. Final detections are obtained by
applying non-maximum suppression on the ensemble of
overlapping detection boxes.

Image and Histogram Downsampling

The first important observation is that the main bottleneck
in computing fHOG features resides in calculating the gra-
dient histogram which happens before computing the final
feature map. Most modern processors provide Single In-
struction, Multiple Data (SIMD) instructions, which have
the same execution time and electricity consumption as their
scalar counterparts, but handle 16 bytes of data simultane-
ously which, for our purposes, enables 4 floating point op-
erations instead of one. This is also the case for the Intel
Atom 1.6GHz processor of the NAO robot used in our re-
search. However, computing histograms involves the deci-
sion of which bin is associated with each data point, and
therefore cannot be fully vectorized. This observation led
us to consider avoiding successive histogram computations,
similar to how other authors avoid direct feature extraction.

Another important aspect to consider is that the bulk of
computational expense rests in the first few levels of the
pyramid that use large scale images. For example, for a
10-level pyramid that uses 4/5 downscaling factor on a
640x480 image, computing the final features for the first
level costs ~ 36.7% of the entire pyramid computation time
(see Figure 1).

We can identify three aspects of the fHOG feature extrac-
tion algorithm that can be accelerated:

e The level to which the scheme is applied
e Image downsampling strategy
e Histogram downsampling strategy

Here we describe each of these aspects, and then put them
to the test in the following section, in comparison with re-
lated state of the art schemes.

All tests are performed on a dataset that contains im-
ages from the publicly available SPQR dataset (Albani et
al. 2016) and also includes new frames coming from robots
during test matches in different lighting conditions and of
lower resolution. Lower resolution images were upscaled to
640x480 which is the chosen resolution of our evaluation,

40
35
30

25

20
15
10 |‘
0 1 2 3 4 5 6 7 8 9

W time

o

Figure 1: Average execution time (in percentage) at each
level of a 10-level pyramid with 4/5 downscaling factor on
a 640x480 image.

as this is the real image size that is usable from the NAO
robot camera; in fact, the output of the camera is 960p/30fps
(1280x960) and is provided in YUYV format (also known
as Y’UV422), but processing the full sized image exhausts
much of the resources available on the robot (Genter et al.
2016). For training and testing, we only consider the Y value
which can very efficiently be read directly from the raw
camera output. The images in the enhanced dataset have
been randomized and divided into 100 training images (50
with horizontal flip added) and 98 test images, amounting
to 190 and 185 positive examples respectively. The reason
for the relatively small training set is that the chosen algo-
rithm seems to perform and generalize better with a smaller
amount of training data.

Skipping Levels

As seen in Figure 1, it is most important to approximate
lower levels of the pyramid, as they have the highest cost in
terms of computation time. Throughout this work, we eval-
uate different downsampling strategies by applying them up
to a certain level of the pyramid. After doing a hyperparam-
eter search on our baseline fHOG object detector, we chose
to use a 4/5 downscale factor which in our implementation
leads to a pyramid with 10 levels (0-9). In the following, we
report the precision and execution time of each approach by
applying the scheme up to a given level exclusively, while
higher levels are computed in the same way as the baseline;
this way, results at level 1 are equivalent for all schemes and
baseline since the scheme is not applied to any level. Start-
ing from level 2 and up to 9, the charts illustrate the effect of
the chosen scheme on performance and speed. We also in-
clude level 10, which means that the entire pyramid (levels
0-9) is approximated, using the chosen scheme.

Image Downsampling

Constructing smaller scale images from which features are
extracted is originally performed (baseline) at each pyramid
level (dubbed slow method in the following). Related work
proposes to only subsample images (dubbed fast method) at
each octave (ratio of 1/2) while approximating the interme-
diary levels. While significantly faster, one may argue that
this method can lead to important information loss for higher
levels (smaller image scales), due to the fact that entire pix-
els are ignored in the downsampled image.

We put this intuition to the test, and evaluate quality when
skipping several levels when downsampling image. We note
that using the fast approach, we obtain “pixelated” parts of
the image, where gradient information is lost (see Figure 2),
but this only becomes clear when the gap between down-
sampled images increases, in our case, further than 4 or 5
levels. We therefore expect that having at least some inter-
mediary images, such as in the case of the power-law ap-
proach (Dollér et al. 2014) which subsamples images at each
octave, should improve results.

Figure 2: Downsampled images at level 5 of the pyramid us-
ing slow (top left) and fast (top right) methods. Bottom row
zooms in on the robot to highlight differences between slow
(bottom right) and fast downsampling approaches. NAO’s
pixelated shoulder is clearly visible, showing gradient infor-
mation loss in fast method.

To study the impact of the two image downsampling
strategies, we measure speed and performance at each level
in the pyramid. To visualize the progression in function of
level, we plot the average execution time (Figure 3) obtained
by a single image pyramid, measured for 10 configurations.
Each configuration ¢ consists in an fHOG detector that per-
forms feature downscaling using the respective image down-
sampling strategy (slow / fast) until level 7 — 1 and then,
from level ¢ onwards it performs the default feature extrac-
tion (which corresponds to downsampling the image and ex-
tracting features at each step).

Average execution time

0.013
0.012
0.011

0.01
0.009
0.008
0.007
0.006
0.005

0.004
1 2 3 4 5 6 7 8 9 10

== fast slow == baseline

Figure 3: Average execution time (in seconds) on modern
computer of slow vs. fast image downsampling when apply-
ing the scheme up to each level of the pyramid.

As expected, the fast approach is more desirable in terms
of execution time. However, we find that the performance of
extracted fHOG features depends on the quality of the image
at higher levels, but remain robust to drastic downsampling
at lower levels. Figure 4 shows that, with hyperparameter
tuning for each configuration, slow downsampling outper-
forms the fast method overall. However, this also implies
a significant loss in execution speed. Nevertheless, we note
that for the first few levels, the performance difference is not
as pronounced.

Average precision

0.9
0.88
0.86
0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7

0.68
1 2 3 4 5] T 8 9 10

[3
3

2 A r
- - -

[3
[3

= = = = .fast e fast_optimal = = &= = slow
slow_optimal e baseline

Figure 4: Average precision of slow vs. fast image down-
sampling when applying the scheme up to each level of the
pyramid. Dotted lines show the performance of the detector
in each case using the same hyperparameters initially found
for the baseline. With hyperparameter search at each level,
we obtain higher scores and a smoother transition.

Therefore, if the approximated gap between downsam-
pled images is small enough, the fast downsampling strategy

should retain enough information to minimize performance
loss while offering good execution speed gains.

Histogram Downsampling

In this work, we refer to “histogram” as the frequency
of gradients binned into each of the 18 orientations de-
scribed by (Felzenszwalb et al. 2010) that is computed be-
fore calculating the final 31-dimensional fHOG features,
while (Dolldr et al. 2014) describe feature downsampling
on final features. Downsampling final features would seem
much faster, because recomputing and normalizing them is
directly avoided, however it turns out that the time lost on
this process is regained in our approach because the down-
sampling is done on 18 dimensions instead of 31. This leads
to very similar runtime for both approaches, but we observe
higher performance loss in scaling final features. This loss
could be alleviated by smoothing the feature maps as (Dollar
et al. 2014) propose, but this would inevitably lead to slower
runtime only to reach detection performance similar to our
approach. In all experiments we use downsampling on 18-
dimensional histograms and then compute and normalize the
31-dimensional fHOG features.

As with images, histograms can be downscaled using bi-
linear interpolation of bins between adjacent cells, either by
always starting from the first level and obtaining the rest
(which we dub direct method), or by successively obtaining
level ¢ + 1 from level i (progressive method). Because the
algorithm requires histograms for all levels, the progressive
method yields faster overall computation time as the source
histogram is smaller, but leads to additional blur that, con-
trary to the case of images, decreases detection accuracy.

While blurred histograms may lead to performance loss,
there is a chance for the machine learning phase to compen-
sate by adapting to the blurred features, we note that learned
models (vignettes) show some variation between the original
algorithm and the two approximation methods (see Figure
5).

Figure 5: Learned robot detection model (vignette) by orig-
inal algorithm (left), using direct (center) and progressive
(right) methods. Characteristic differences are not notice-
able, as the learned model is able to adapt to some of the
blur or information loss in either version.

Figure 6 illustrates the difference between direct and pro-
gressive methods, where the blur introduced becomes visi-
ble. In the following we evaluate execution speed and per-
formance of each method, by successively applying it up to
a given level ranging from 2 to 10, where 10 is actually a

Figure 6: Example image from SPQR dataset (Albani et al.
2016) (top) with extracted fHOG feature maps at level 3 us-
ing direct (second row) and progressive (third row) meth-
ods. Bottom row emphasizes information loss in progressive
method; NAO’s ear and head contour are still visible in di-
rect gradients but are blurred away in progressive method.

completely approximated pyramid, the entire pyramid has
10 levels (0-9) as in the previous results.

From Figure 7 we observe that the speed of both progres-
sive and direct schemes are very similar, with little loss at
higher levels for the direct histogram downsampling.

Average execution time
0.013

0.012

0.011 ——
0.01

0.009

0.008

0.007 s

0.006 It
0.005 N—_"‘w—-.__'__.

0.004
1 2 3 4 5 6 7 8 9 10

—#— progressive direct —#— baseline

Figure 7: Average execution time (in seconds) on modern
computer of progressive vs. direct histogram downsampling

As for the slow and fast schemes, we compute the average
precision of the detector using progressive and direct his-
togram downsampling with hyperparameters of the baseline
and with best scores after a parameter search for each level.
Results in Figure 8 show that direct downsampling outper-
forms progressive by a small but real margin. We must note
however that this advantage only appears after a few levels,
where the blur introduced by the progressive method accu-
mulates.

Adaptive Feature Pyramid Construction

It is clear that a trade-off exists between detection perfor-
mance and the frame-rate at which the algorithm can run.
While it is ideal to obtain accurate detections, in real setups
such as the RoboCup competition the robot must also spend
computational resources on other tasks, such as maintaining
balance while walking. In fact, resource consumption varies
throughout the game, depending on the situation. Therefore,
it is desirable to have an adaptive control of the trade-off be-
tween accuracy and speed, while maximizing detection pre-
cision (i.e. minimizing false positives).

In the previous section, we evaluated the drop in perfor-
mance that comes with “skipping” feature computations up
to each level of the pyramid. Meanwhile, the power law ap-
proach (Dollér et al. 2014) provides a good trade-off: ap-
proximately 4% loss in average precision (in our setup, on
images of robots) for almost doubling the speed of feature
extraction.

Here we evaluate a hybrid' between the skipping ap-
proach described previously and the power law based

"Full code available on anonymous repository:
https://github.com/blindpeerreviewgit/fhog

Average precision

0.9 o

| e
0.88 BablE &
0.86 =

%
~ -
0.84 iy
0.82 L.
0.8 L 2 0y
0.78 s . R
0.76 ML AR
074 %,
0.72
0.7
0.68
1 2 3 4 5 6 7 8 9 10

= = &= = progressive
= = = = direct
== Daseline

progressive_optimal
direct_optimal

Figure 8: Average precision of progressive vs. direct his-
togram downsampling. Dotted lines show the performance
of the detector in each case using the same hyperparameters
initially found for the baseline.

method. We begin by skipping feature extraction up to level
N exclusively, while retaining it at levels that coincide with
a 1/2 downscale of the image (octave). This way, we obtain
a method that is bounded in speed and average precision by
the original baseline (upper bound) and the power law based
results (lower bound).

The setup presented herein uses 4/5 downscale from one
level to the next, therefore octaves correspond roughly to
levels 3, 6 and 9. The proposed scheme skips levels except-
ing those corresponding to octaves and applying the scheme
up to (but excluding) level N, thus we have equivalence be-
tween levels 3-4, 6-7 and 9-10 as the same conditions are
met (see Algorithm 1).

Algorithm 1 Level approximation condition for 4/5 image
downsample ratio

nrLevels < 10
octaveLevel < 3
upToLevel + level up to which scheme is applied
11
while ¢ < nrLevels do
if (i > wupToLevel) or (i mod octaveLevel = 0)
then
downsample image (slow or fast)
compute histogram from image
else
downsample histogram (direct or progressive)
end if
extract features from histogram
t+1+1
end while

We note that the approximation of levels following an oc-

tave is done using the result that was obtained from a down-
sampled image, therefore the quality of the histogram is su-
perior to the case where the approximation had continued
from the first level, as is the case in the previously described
results.

In Figure 9 we compare our approach with the original
algorithm, power law method and the previously described
level skipping strategies. As with the optimal versions of
previous strategies, we performed a hyperparameter search
at each level of the proposed method.

Average precision

0.9

0.88 m

0.86 e
0.84
0.82
0.8
0.78
0.76
0.74
0.72

0.7
1 2 3 4 5 6 T 8 9 10

=—p— progressive_fast_powerlaw progressive_fast_optimal
progressive_slow_optimal === baseline
powerlaw

Figure 9: Average precision of studied feature approxima-
tion methods. Baseline and power-law based approaches
(Dollar et al. 2014) shown as a straight lines, due to no level
parameter.

Average execution time
0.013
0.012 e bbb
0.011
0.01
0.009
0.008
0.007
0.006 2} ' ! - ="
0.005 \‘x’\o—e
0.004
1 2 3 4 5 6 7 8 9 10

== progressive_fast_powerlaw === progressive_fast_optimal
progressive_slow_optimal === baseline
powerlaw

Figure 10: Average execution time (in seconds) of studied
feature approximation methods on modern computer. Base-
line and power-law based approaches (Dollar et al. 2014)
shown as a straight lines, due to no level parameter.

We observe the importance of retaining image downsam-
pling at octave intervals as described by (Dollér et al. 2014).
Applying our scheme up to level 4 does not sacrifice aver-
age precision, even though the most computationally expen-
sive levels are approximated. At higher levels, average pre-
cision gradually decreases until it matches its lower bound,
the power law baseline.

As the previous experiments have shown, gains in exe-
cution speed are significant especially for the first few lev-
els of the pyramid. Figure 10 illustrates how execution time
drops with each level, on the modern computer. At level 4,
which had no average precision loss, the scheme offers 1.57x
speed increase relative to the original algorithm. Increasing
the level up to which the scheme is applied to 7 gives a 1.87x
speed increase with only ~ 1% decrease in average preci-
sion.

We note that the slow image downsampling strategy could
give slightly higher average precision results, but the loss in
execution speed would be much higher.

Results

The processor equipped on the NAO v4 robot platform is,
according to our estimates, approximately 25 times slower
than the modern CPU on which we ran the evaluation. This
is due to several factors such as lower frequency, less pro-
cessor cache and other aspects which are outside the scope
of this paper. These differences impose a hard standard on
what algorithms can be run on this model of robots.

We evaluated the scheme on the NAO robot, obtaining
gains in execution speed similar to the PC version (see Ta-
ble 1). In fact, the speed increase is 1.68x without average
precision loss compared to the original baseline, which is
higher than the PC version, due to optimizations that are not
available on the robot. At level 7, we obtain 1.95x speed in-
crease with only 1.14% loss in average precision, while at
level 10 (which is equivalent to the power law approach) the
speed increase is 2.05x but the loss rises to 3.21%.

level AP TMC | TR FPPI MR
1 89.3% | 119 [2982 [54x107 | 11.3%
2 89.4% | 9.0 |227.1 [8.6x102 | 8.6%
3-4 | 894% | 7.5 177.0 | 3.7x 102 | 10.2%
5 87.7% | 6.8 162.3 [2.1x 102 | 11.8%
6-7 | 882% | 6.3 152.4 [3.2x 107 | 11.3%
8 87.0% | 6.2 1489 | 43x 102 | 12.9%
9-10 | 86.1% | 6.1 1453 [3.7x 1072 | 13.5%

Table 1: Summary of proposed scheme performance. Aver-
age precision (AP), feature extraction execution time in mil-
liseconds on modern computer (TMC) and on robot (TR),
false positives per image (FPPI) and miss rate (MR) are
shown for each level up to which the scheme is applied.

We note that the time needed to compute the feature pyra-
mid on the robot is still elevated, and thus more optimiza-
tions will be required. However, the ~ 150 millisecond drop
with minimal loss in average precision is an important im-
provement in this case. To retain smooth motion and cogni-

tion, the algorithm can be broken down into multiple steps,
and tracking can be performed in between. The important
aspect is that the number of false positives per image is low,
while some such cases are actually correct hits which were
not annotated in the dataset (see Figure 11).

Figure 11: Robot detection examples. Top row shows true
positives, bottom left shows a false positive (fallen robot was
not annotated in the dataset) and bottom right shows false
negatives due to excessive blur and similar background.

The algorithm is relatively robust to lighting conditions,
as well as to a reasonable amout of motion blur. We no-
tice that a limitation is represented by situations in which
the robot “blends” with the background, as illustrated in the
bottom-right sample in Figure 11.

Outside the scope of the RoboCup competition, we expect
that our approach will offer a better, adjustable trade-off be-
tween average precision and execution speed. For more dif-
ficult object detection problems, if hardware resources are
more readily available, finer sampled image pyramids may
improve results, and the gain from approximating interme-
diate levels becomes much more pronounced.

Conclusions and Future Work

In this work we provided a detailed evaluation of the trade-
off between feature extraction speed and detector average
precision, at each level of the feature pyramid. In our exper-
iments, we used histogram downsampling instead of final
feature downsampling used in related work. Results showed
that this trade-off is not linear and that average precision
is not lost by skipping the first few levels of the pyramid,
which in fact account for a major part of the total computa-
tion time. We compared these results with the initial algo-
rithm and a state of the art method based on image down-
sampling power law as a baselines. Based on this analysis,
we developed a hybrid method which is upper bounded by
the original baseline and lower bounded by the power law
approach in both execution time and average precision. In
practice, the proposed method can be adapted, by changing
the level up to which it is applied, to favor average precision

or execution speed. This way, on a modern computer, we
obtain 1.57x increase in pyramid construction speed with-
out any loss in average precision, ~ 1% average precision
loss (> 60% improvement compared to the state of the art
method) with 1.87x speed increase (~ 96.4% of the possi-
ble execution speed gain on modern computer), and finally
the same results as the state of the art when our method ap-
proaches its lower bound. Further gain in execution speed
may also be obtained by skipping levels at octave intervals,
but at the cost of drastic performance loss.

Execution speed gains are retained on the robot imple-
mentation, where we obtain 1.68x speed increase compared
to the baseline with no loss and 1.95x increase with ~ 1%
average precision loss, compared with 2.05x obtained with
the power law baseline that presents ~ 3% average precision
loss.

Following from the observation that the first few levels of
the pyramid account for the majority of execution time, and
that in our approach we compute the first level (level 0), ex-
tra time should be saved by upscaling level O from higher
levels. Future work will include performance evaluation of
this idea, as well as vectorizing histogram downsampling to
the extent possible. The actual robot implementation will di-
vide the feature pyramid extraction and object detection al-
gorithm into steps that can be executed over multiple cogni-
tion cycles to offer more control over processor load.

Acknowledgements

[removed for blind review]

References

Albani, D.; Youssef, A.; Suriani, V.; Nardi, D.; and Bloisi,
D. 2016. A deep learning approach for object recognition
with nao soccer robots. In Robocup Symposium.

Brandao, S.; Veloso, M.; and Costeira, J. P. 2011. Fast object
detection by regression in robot soccer. In Robot Soccer
World Cup, 550-561. Springer.

Budden, D.; Fenn, S.; Walker, J.; and Mendes, A. 2012. A
novel approach to ball detection for humanoid robot soccer.
In Australasian Joint Conference on Artificial Intelligence,
827-838. Springer.

Dalal, N., and Triggs, B. 2005. Histograms of oriented gra-
dients for human detection. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 1, 886-893. IEEE.

Dollar, P.; Belongie, S. J.; and Perona, P. 2010. The fastest
pedestrian detector in the west. In British Machine Vision
Conference, volume 2, 7.

Dollér, P;; Appel, R.; Belongie, S.; and Perona, P. 2014. Fast
feature pyramids for object detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 36(8):1532—
1545.

Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D.; and Ra-
manan, D. 2010. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern
analysis and machine intelligence 32(9):1627-1645.

Genter, K.; MacAlpine, P;; Menashe, J.; Hannah, J.; Lieb-
man, E.; Narvekar, S.; Zhang, R.; and Stone, P. 2016. Ut
austin villa: Project-driven research in ai and robotics. IEEE
Intelligent Systems 31(2):94-101.

Gudi, A.; de Kok, P.; Methenitis, G. K.; and Steenbergen, N.
2013. Feature detection and localization for the robocup soc-
cer spl. Project report, Universiteit van Amsterdam (Febru-
ary 2013).

Khandelwal, P.; Hausknecht, M.; Lee, J.; Tian, A.; and
Stone, P. 2010. Vision calibration and processing on a hu-
manoid soccer robot. In The Fifth Workshop on Humanoid
Soccer Robots at Humanoids 2010.

King, D. E. 2009. Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research 10(Jul):1755-1758.
King, D. E. 2015. Max-margin object detection. arXiv
preprint arXiv:1502.00046.

Metzler, S.; Nieuwenhuisen, M.; and Behnke, S. 2011.
Learning visual obstacle detection using color histogram
features. In Robot Soccer World Cup, 149-161. Springer.

