
INTELLIGENT TUTORING SYSTEM FOR PROCEDURAL AND
COLLABORATIVE TRAINING

Buche, C., Le Gal, C. and Querrec, R.

Centre Européen de Réalité Virtuelle, BP 38 - 29280 Plouzané, France. E-mail: [buche,legal,querrec]@enib.fr

ABSTRACT

This article takes place in the formalization of processes for the development of differentiated virtual environments for
training. It defines the implementation, by the way of agents, of basic models of Intelligent Tutoring Systems,
considering the training of decisional behaviour within collaborative procedures. It specifies the behavioural and
functional features linked to the procedural problematic and to the use of immersive virtual environments. It also details
the interactions between the agents, necessary to implement a pedagogical agent able to assist the teacher.

1. INTRODUCTION

Our works focus around the use of the virtual reality for the implementation of a differentiated pedagogy focused on the
decisional behaviour training for procedural and collaborative work. We build a teaching environment where a teacher
has in charge several learners. In this context, every student is immersed in a virtual environment, simulating his
physical environment and realizes his social environment (Querrec et al. 2004).

We distinguish the role of the teacher, specialist in the domain, of role of the pedagogue, expert in education. In our
system, the teacher is in communication with the learner and his charge increases with the number of learners.
Therefore, our objective is to simulate a pedagogical reasoning, in order to suggest pedagogical assistances to the
teacher, adapted to the simulation context and to the learner. For that, the system analyzes interactions between learner
and virtual environment and interacts with the teacher in order to choose the most relevant pedagogical assistance
(figure 1).

FIG. 1 The system interacts with the learners and the teacher.

This approach divides our work in two parts:
1 First, we provide an “informed virtual environment” where the knowledge on the learner, the domain, the

interface (system / learner interaction) and the pedagogy are represented, and updated online. For that, we
propose an Intelligent Tutoring System (ITS). Our model defines our ITS items in the form of a multi-agents
system.

2 Second, we define a pedagogical agent providing an educational reasoning, considering the knowledge of our
ITS.

The object of this paper is the first part of our work.

Many applications integrate an ITS in a virtual environment for training. (Levesque 2003) or (Popovici et al. 2004) are
two good examples of such an environment. However, these two applications are focus on the simulation of the
environment and do not incorporate explicit knowledge for education reasoning. (Rickel & Johnson 1999) incorporate a
knowledge representation but only of the domain and on the learner. The most evolved propose a diagnosis model
(Lourdeaux 2001), where the error notion and the proposed pedagogical assistances are specified for every exercise, and
therefore are not generic.

2. THE MODELS

In this section, we show how we represent the knowledge used by the pedagogical reasoning of our system. These
knowledge are contained in models inspired from classical ITS (Buche et al. 2004):
1 the domain model, representing the expert knowledge on the domain, useful for the pedagogy;
2 the learner model, allowing to establish the state of his knowledge, at a given instant, as well as his profile;
3 the errors model, proposing to identify the errors and containing a knowledge base on classical errors;
4 the interface model, allowing the information exchange between system and users;
5 the pedagogical model, taking the teaching decisions.

Models are based on an abstract model (AgentPackage) considering an agent (Agent), behaviours (Behavior)
and knowledge (KB). Every agent (InterfaceAgent, LearnerAgent, ExpertAgent, ErrorAgent,
PedagogicalAgent, TeacherAgent) is in interaction with one or several agents, and consequently able to update
its knowledge and to adapt its behaviours.

First, we present the functional links between models, allowing to update knowledge and to define a process bringing to
a pedagogical decision. Next, we detail the domain model, the learner model, the errors model and the interface model.
They provide the knowledge used by the pedagogical model to make a pedagogical reasoning. The pedagogical model
is not the scope of this article.

The principal objective of the system is to propose pedagogical assistances to the teacher according to the learner
activities and to the simulation context. For that, each agent maintains its knowledge using information exchange with
other agents.

2.1 The interaction between models

An agent is associated with a model. The teacher intervenes using the TeacherAgent. Models interact and
exchange data extracted from the simulation or deducted from an internal reasoning. We propose a process in 5 steps,
to be performed for each learner (figure 2):
1 Observe (InterfaceAgent): using the interface model, the system analyzes the learner activities. Relevant

elements for the training are provided to the learner model: learner actions (PCVAction see section 2.5),
elements observable by the learner (PCVObservation see section 2.5) and learner motions (PCVMotion see
section 2.5).

2 Detect and Identify (LearnerAgent, ExpertAgent, ErrorAgent): the system analyzes the learner
actions (learner model) and compares them to actions to carry out (domain model). This confrontation allows to
detect an eventual error. If an error is detected, an error identification mechanism acts (using the errors model).
Moreover, the custom rules of the domain model are checked (independent rules of the procedure scheduling).

3 Propose pedagogical assistances (PedagogicalAgent): using the learner model (features, activities, error)
and the domain model (knowledge on organisational structures), a mechanism simulating a pedagogical
reasoning recommends the pedagogical assistances adapted to the context.

4 Pedagogical assistance choice (TeacherAgent): the teacher selects a pedagogical assistance among those
recommended.

5 Represent the pedagogical assistance (InterfaceAgent): the selected pedagogical assistance is presented to
the learner in the virtual environment.

FIG. 2 The pedagogical process is a 5 steps cycle.

2.2 The domain model
The domain model is a knowledge representation the learner has to acquire; it represents the set of the expert knowledge
on the learning domain. The system is used by the system to verify if the actions carried out by the learner are correct.
It is also used to propose solutions or explanations to learner problems. Finally, it contains information allowing to
interpret knowledge, in order to allow the action execution.

Knowledge base
In the case of the collaborative procedures training, these knowledge concern the social environment and the
procedures. The domain model we propose is based on the organization model of MASCARET (Buche et al. 04). We
distinguish knowledge on:
1 Social environment.

The knowledge on the social environment is a set of expert knowledge on teams. Every expert knowledge uses
the knowledge on the organisational structure of the model (Team in MASCARET), allowing to have a
representation of roles, hierarchical relations between roles, and responsibilities within the procedures.

2 Procedures.
The knowledge on the procedures allows to define the actions scheduling.

3 Custom rules.
The domain also contains additional rules, independent from the procedures (Rule) (figure 3). Althought not
part of the scheduling, these rules must be respected.

Knowledge representation and interpretations
1 Teams and procedures

The knowledge representation on teams and procedures uses the organisational structure defined in MASCARET.
Thus, an agent soliciting the agent maintaining the domain model (ExpertAgent), does not ask any specific
question (for example: Is it necessary to do the action “to walk towards the object O”?), but asks a generic
question (for example “which action have to be done, after the action B, in the mission M1, considering the role
R1 in the organization O1?”). The representation of the organization concept in MASCARET allows carrying to
do such reasoning.

2 Actions and custom rules
Actions pre/post conditions and custom rules are represented by logical rules. Since we wish to get explanations
on procedures, actions or custom rules in plain English, the represented knowledge must have an interpretation
capacity and a description close to natural language. Consequently, the rules representation in the knowledge
base uses a symbolic formalism and the interpretation uses a reasoning method based on a forward or backward
chaining, depending on the explanations awaited. Rules constitute a knowledge base and are represented in
order to be used by an explanations motor. We propose a representation of rules by Prolog terms composites
(LogicalTerm). A rule can be evaluated, and the terms evaluation allows to generate an explanation.

Behaviors
The ExpertAgent proposes reactive behaviours (figure 3) linked to the following elements:

1. Social environment (OrganisationBehavior).
It has the ability of reasoning on agents and roles. The expert agent is able to inform on the responsibilities of
each. Considering the knowledge on the social environment, it replies to the question “is the action A is the
responsibility of the role R?”.

2. Procedures (ProcedureBehavior).
The MASCARET model proposes a procedure model (actions scheduling). As STEVE (Rickel et al. 99), the
expert agent is able to provide explanations. It can provide the actions scheduling as well as every step goals
(procedure / action).

3. Actions (ActionBehavior).
The MASCARET model proposes an actions model subjected to pre/post-conditions. They are represented
under the form of rules. As STEVE, the ExpertAgent is able to provide explanations and to act in place of
the learner. It can provide the pre/post-conditions and explain why they are (or are not) satisfied.

4. Domain rules (RuleBehavior).
The ExpertAgent has the possibility to provide explanations on the “custom rules” (independent of the
procedure) (Rule) using the rule terms representation.

FIG.3 UML diagram of the expert model.

2.3 The errors model
The objective of the errors model is to represent the knowledge allowing to explain why there is error, and to associate
elements being able to be used to facilitate error comprehension.

Knowledge Base
The knowledge concerns a generic characterization of the errors allowing to detect them, and to provide to the
pedagogical agent means to react (explanation, warning ...).

Knowledge representation and interpretations
The objective, exposed previously, brought us to tag errors. The different tags, represented in figure 4, distinguish
errors on custom rules (UsageError), on roles (TeamError: team role), on procedure (ProceduralError:
scheduling) and on actions (ActionError: pre-conditions).
Additional information, considering classical domain errors, can be written by the teacher and take the form of a rule.
Then, the knowledge is represented specifying features of these classical errors (left part of the rule) and additional
associated information (right part of the rule). A rule example is “if (the student do the action C after the action A);
(this is a procedure error because Z)”. “Z” being a rule constituted of a text and pointing to virtual environment entities
(Object3D).

FIG.4 Different errors tags.

Behaviors
The ErrorAgent have the following behaviours (figure 5):
1. Detect and tag errors (ErrorDetectionBehavior) :

It detects a potential error carried out by the student:
• It verifies if the action solicited by the learner is feasible (pre-conditions) (ActionError).
• It compares the possible actions allowing to advance of one step in the procedure (provided by the domain

model) and the action solicited by the learner (provided by the learner model). Information on these
actions are recovered using the ErrorAgent and the LearnerAgent associated to the learner. It has
to verify if the solicited action is in the possible actions (ProceduralError). It also assures the agent
in charge of the solicited action has the ability (defines by its role) to carry out the solicited action
(TeamError).

• It verifies the custom rules of the domain model, using a facts base on the virtual environment, provided
by the InterfaceAgent (UsageError). When the ErrorAgent detects and tags an error, it
transmits it to the pedagogical agent.

2. Recognize a classical error of the domain (ErrorAssociationBehavior) :

Our errors model contains a knowledge base on classical errors carried out by a student, in the concerned
domain. It can be compared to the "Buggy model" present in other ITS (Brown & Burton 1978). The
ErrorAgent is able to recognize such an error comparing the error to the left part of the rules (corresponding
to classical errors in the knowledge base). Then, it enriches the error (previously taged) with additional elements
(Concept_on_Error).

3. Auto enrich: (EnrichBehavior)

The ErrorAgent records information on the errors frequency in order to inform the teacher. A mechanism,
under the control of the teacher, uses such information to enrich the knowledge on the classical errors of the
domain.

FIG.5 UML diagram of the errors model.

Communication
When the InterfaceAgent detects a new action from the learner, it informs the ErrorAgent. It analyzes the last
action of the learner, soliciting the LearnerAgent and consulting the ExpertAgent to know the action to carry
out. The ErrorAgent instantiates an Error and communicates it to the LearnerAgent.

2.4 The learner model
The learner model has to represent information characterizing the student from the prototypic point of view (student’s
profile) and from a curriculum point of view (student progression). The objective is not to model a virtual human, but
to get information in a training framework.
The objective is to provide a differentiated learning in virtual environments for multi-learners. Consequently for every
learner, an InterfaceAgent and a LearnerAgent are used. The InterfaceAgent updates the learner model
indicating learner activities.

Knowledge Base
We use the distinction proposed by Delestre (Delestre 2000), separating the epistemic part and the non epistemic part:
1. The epistemic part (EpistemicKB) provides information on the state of learner knowledge for notions present in

the domain. It contains a representation of steps and errors done by the learner. These information are dynamically
updated and are available using the LearnerAgent. As suggested by Lourdeaux (Lourdeaux 2001), our learner
model contains a light domain model representing the carried out steps. This is the overlay method (Stansfield, Carr
& Goldstein 1976). Then we make the simplifying assumption, considering actions reflect the learner knowledge.
Moreover, it seems relevant to add information on the carried out errors. Learner actions and errors are stored
following the sequence of simulation, and then we obtain his curriculum.

2. The non epistemic part (NonEpistemicKB) proposes a representation on information from cognitive
engineering:
• psychology, this knowledge is from an analysis of a form filled before the exercise. It defines the learning

strategy privileged by the learner;
• physiology, it contains the learner auditory and visual features. These information will be used by the

PCVObservation (to see models interface 2.5);
• memory of the virtual elements observed by the learner, in an instantaneous way

(sensorialTimeMemory), or in a short time (shortTimeMemory).

Behaviors
1 The LearnerAgent updates dynamic information concerning the learner activities (figure 6):

• CurriculumBehavior: new action / error;
• MemoryBehavior: objects having physical representation and the learner could observe. These information

are updated using the PCVObservation.
2 The LearnerAgent replies to others agents requests (InformBehavior) concerning the learner activities

(example: last action achieved) or learner features (example: privileged strategy).

FIG.6 UML diagram of the learner model.

2.5 The interface model
The interface model is in charge of the bidirectional communication between the learner and the system. In a training
framework, the system has to offer to the learner the ability to interact with his environment and to analyze its activities.
We consider the virtual behaviour primitives, called PCV, from Fuchs (Fuchs et al. 2003). Fuchs gathers PCV in four
categories:

1. to observe the virtual world;
2. to move in the virtual world;
3. to act in the virtual world;
4. to communicate with others.

Knowledge Base
Our interface model contains a knowledge base on the learner (LearnerInformationKB) allowing to take into
account its personal features. These information is from the dialog between the InterfaceAgent and the
LearnerAgent (learner model).

Behaviors
The InterfaceAgent possesses three behaviours corresponding to every PCV. We did not take care of the
communication PCV, because the knowledge on this point seems delicate to exploit pedagogically at the moment. The
PCVAction lets the learner to interact with objects of the environment and detect the learner actions. The
PCVObservation and the PCVMotion analyze its activities.

FIG. 7 The package PCV is constituted of three parts: observation, movement and action.

1. PCVAction

The PCVAction offers means of interactions between the learner and the environment, and detects the actions
solicited by the learner:

The means of interactions
First, the system has to propose to the learner means of interactions with the objects of the virtual environment
corresponding to its decisions. This interaction can be regulated adapting itself to the learner (using the knowledge base
on the learner and soliciting the PedagogicalAgent). In fact, we can think it does not be necessary to overload a
novice learner proposing unreachable decisions at a moment, while it can be interesting for a experimented learner. To
take a decision, the learner solicits physical objects. They have knowledge on the actions they can carry out. They are
controlled by graphs of states. When the learner solicits an action on an object:

• the PCVAction recovers the object internal information (possible actions, state running, reachable states),
• next, it asks PedagogicalAgent actions to propose, specifying of internal information and the learner

features,
• the PCVAction posts the proposed actions under the form of a 3D menu.

The solicited actions
Next, the system has to detect the solicited actions and carried out by the learner, in order to update the learner model.
The learner actions on virtual environment objects can be varied (rotation, translation, deformation, etc). Nevertheless,
our work framework is not the training to technical gesture, but to decisional behaviour. Therefore the system has to
detect and to identify decisions. The learner obtains the possibilities of actions using PCVAction. A choice between
different solutions is offered to him. Then it takes his decision and solicits an action. The PCVAction gets the
information and transmits it to system. The LearnerAgent gets the information. After an analysis by the
ErrorAgent, the PedagogicalAgent chooses to authorize or not the action. In fact, it can consider interesting to
carry out an action, even if there is an error, for some learner. The PCVAction indicates if the action is done or not
and informs the LearnerAgent.

2. PCVObservation

It is interesting to know the elements present in the learner vision field to take a pedagogical decision. In fact, consider
for example the pre-condition of an action A needs the presence of the object B. The pedagogical assistance must take
into account the learner has the opportunity to observe this object or not.
The observation PCV gets a list of objects appearing in the user vision field, as well as their distances and their
orientations to the user. Although simplistic, we made the assumption a visible object is perceived by the learner. In
order to adapt the system to all users, the observation PCV takes into account the learner model to obtain physiologic
data (user depth and width of vision, contained in LearnerInformationKB). The LearnerAgent updates the
learner model (Memory) calling the PCVObservation services.

3. PCVMotion
It is not necessary to always know the accurate position of the learner in the environment. Yet it is useful knowledge,
the learner moves towards the place where the next action takes place, if the learner approaches to a precise object and
with which speed. The movement PCV replies to these needs permitting:

• to get the user average orientation from a starting point;
• to know the object towards the user globally is going to;
• to know instantaneous user speed;
• to get knowledge on distances (fuzzy variables: outside, far, near, inside) between zones and the user;

The movement PCV will send information on zones, direction and speed in permanence to the LearnerAgent
allowing to update the learner model.

3. CONCLUSION AND FUTURE WORKS

We presented the models of our ITS containing the knowledge base used by our system pedagogical reasoning. We
detailed the domain model, the learner model, the errors model and the interface model. We presented the dynamics
between the models, allowing to update the knowledge of each and we defines a process bringing to a pedagogical
decision. Our ITS provides a knowledge base allowing to make a pedagogical reasoning.

The objective is to propose to the teacher pedagogical assistances adapted to the learner. For that, the pedagogical agent
(PedagogicalAgent) constructs a knowledge base, called the “pedagogical situation”. It corresponds to relevant
elements to take into account to choose pedagogical assistances. It is constituted by elements present in models of our
ITS previously described (error, domain, learner features and activities), increased by the action context (pre/post
condition, resources …). Future works will concern the different parts of our approach (figure 8):
1 the automatic construction of the “pedagogical situation”;
2 the pedagogical model specifying the PedagogicalAgent behaviour (pedagogical rules selection) in order to

propose to the teacher pedagogical assistances;
3 the artificial learning mechanism allowing the pedagogical model to take into account the teacher choices and to

modify its suggestions consequently.

FIG.8 The different parts of the pedagogical agent (PedagogicalAgent).

4. REFERENCES

[1] Querrec, R., Buche, C.,Maffre, E., et Chevaillier, P. (2004). Multi-agents systems for virtual environment for

training. Application to firefighting. Special issue "Advanced Technology for Learner" of International Journal
of Computers and Applications (IJCA), 1(1):25-34.

[2] Levesque, P. (2003). Creation and use of 3d as built models at EDF. In FIG Working Week 2003.

[3] Popovici, D., Gerval, J.,Chevaillier, P., Tisseau, J., Serbanati, L., et Gueguen, P. (2004). Educative distributed
virtual environments for children. Journal of Distance Education Technologies, 2(4) :18-40.

[4] Rickel, J. et Johnson, L.(1999). Animated agents for procedural training in virtual reality: Perception, cognition,
and motor control. Applied Artificial Intelligence, 13.

[5] Lourdeaux, D. (2001). Réalité virtuelle et formation : conception d'environnement virtuels pédagogiques. PhD
thesis, Ecole des mines de Paris.

[6] Buche, C., Querrec, R., DeLoor, P., et Chevaillier, P. (2004). MASCARET: A pedagogical multiagent system
for virtual environment for training. Special issue "Cyberworlds and education" of the international Journal of
Distance Education Technologies (JDET), 2(4) :4161.

[7] Brown, J. S. et Burton, R. R.(1978). A paradigmatic example of an artificially intelligent instructional system.
Int. Journal of ManMachine Studies, 10 :323339.

[8] Delestre, N. (2000). METADYNE, un Hypermédia Adaptatif Dynamique pour l'Enseignement. PhDthesis,
Université de Rouen.

[9] Stansfield, J., Carr, B., et Goldstein, I. (1976). Wumpus advisor 1. : a first implementation of aprogram that
tutors logical and probabilistic reasoning skills. Technical report, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory.

[10] Fuchs, P. et Moreau, G. (2003). Le traité de la réalité virtuelle. Presses de l'école des mines.

