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Abstract Multi-task learning by robots poses the challenge
of the domain knowledge: complexity of tasks, complex-
ity of the actions required, relationship between tasks for
transfer learning. In this article, we demonstrate that this do-
main knowledge can be learned to address the challenges of
high-dimensionality and unboundedness in life-long learn-
ing. Specifically, the hierarchy between tasks of various com-
plexities can be learned to bootstrap transfer of knowledge
from simple to composite tasks. We propose a framework for
robots to learn sequences of actions of unbounded complex-
ity in order to achieve multiple control tasks of various com-
plexity. Our hierarchical reinforcement learning framework,
named Socially Guided Intrinsic Motivation for Sequence of
Actions through Hierarchical Tasks (SGIM-SAHT), relies
on intrinsic motivation to explore the action space and task
space, and to discover the relationship between tasks and
learnable subtasks. Through experiments on robot arms and
mobile robots, we outline our contributions to enable robots
to efficiently associate sequences of actions to multiple con-
trol tasks: representations of task dependencies, emergence
of affordances mechanism, curriculum learning and active
imitation learning. SGIM-SAHT mainly advantages tasks at
a high level of hierarchy, as our active learning algorithm
chooses the most appropriate exploration strategy based on
empirical measures of competence and learning progress. It
infers its curriculum by deciding which tasks to explore first,
how to transfer knowledge, and when, how and whom to im-
itate. We compare these properties with the state of the art.
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Fig. 1: Setup1: the robot arm can move the pen, draw, move the joysticks,
move the videogame character on the screen.

Fig. 2: Setup2: the robot arm can produce sounds by moving the blue and
green objects

Fig. 3: Setup3: the mobile robot can avoid red obstacles, move green objects,
push green objects with other objects

1 Introduction

In the mainstream approaches based on classical artificial
intelligence and machine learning, robotic engineering ap-
proaches have made several valuable application-specific im-
pacts. Yet, the achievements are often subject to restrictions
that involve domain knowledge, a bounded and specific en-
vironment, or a limited set of tasks of the same complexity.

To face the challenges of multi-task learning in a con-
tinual manner for embodied agents interacting with their
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stochastic environment and with humans, methods have taken
inspiration in the living, and especially in how adults and in-
fants learn in a life-long learning manner as they develop,
adapt and create new skills all along their lives to tackle
the various situations they face. These methods fall into the
field named cognitive developmental robotics [1, 20], within
which we will consider representations of actions, the notion
of task complexity in curriculum learning and intrinsic mo-
tivation as an exploration heuristic.

1.1 Learning Sequences of Motor Policies

In the case of multiple tasks with various complexities and
dimensionalities, the complexities of actions considered to
complete them should be unbounded, without a priori knowl-
edge. If we relate the complexity of actions to their dimen-
sionality, actions of unbounded complexity should belong to
spaces of unbounded dimensionality. For instance in setup
Fig.1, if an action of dimensionality n is sufficient to draw
a letter, a sequence of 2 actions, i.e. an action of dimen-
sionality 2n is sufficient to draw two letters. Nevertheless,
in general, texts have variable lengths, therefore there is no
bound to the length of this sequence of actions. Likewise, in
setup Fig.2, an unbounded sequence of actions is needed to
make any tune composed of sounds; and in setup Fig.3, to
move all green objects side by side.

Hence, in this article, we consider actions of unbounded
complexity and suppose that they can be expressed as a se-
quence of action primitives. We will consider primitive ac-
tions and sequences of actions, also named in [40] respec-
tively micro actions and compound actions. The agent thus
needs to estimate the complexity of the task and deploy ac-
tions of corresponding complexity. The algorithm needs to
address the curse of dimensionality.

To tackle high-dimensional sensory inputs, methods such
as DQN [24], using a deep neural network architecture have
successfully handled higher dimensional continuous outcome
and context spaces while still considering discrete action
spaces. More recently, Mnih et al. [25] proposed an asyn-
chronous variant of the Actor Critic algorithm, relying both
on deep neural networks and gradient policies, which suc-
cessfully handles continuous action spaces.

The options framework proposes a temporally abstract
representation of actions [35]. It enables the agent to learn
sequences of actions and reuse them later. Approaches ex-
tending the options framework propose a temporal abstrac-
tion to optimise learning representation [33].

Skill chaining has proposed chains of options in order to
reach a given target event. Learning simple skills and plan-
ning sequences of actions instead of learning a sequence di-
rectly has been shown to greatly simplify the learning prob-
lem [17]. This idea of multi-step plans using forward chain-

ing successfully generated totally ordered plans starting from
the initial state to a specified goal in in [38].

Following the ideas of a temporally abstract represen-
tation of actions and of multi-step planning, we propose a
goal-directed representation of compound actions and a multi-
step plan using inverse chaining of self-discovered subtasks.

1.2 Task Hierarchy for Curriculum Learning

Multi-task learning in biological agents is progressive and
continual. Humans and other species develop and create new
skills all along their lives as they adapt to their environment
and to their own needs. In particular, infants learn skills of
increasing level of difficulty as they grow up: learning sim-
ple skills first and then expanding their repository by mas-
tering more complex skills based on the previous simple
ones. Indeed, in multi-task learning problems, some tasks
can be compositions of simpler tasks, which we call ’com-
plex tasks´ or ’composite tasks´. The learning agent should
be starting small before trying to learn more complex tasks,
as phrased in [12]. Devising the order in which tasks should
be learned has been coined ’curriculum learning’ in [4]: a
learning agent needs to decide at each episode both which
tasks it wants to learn to control (goal) and which actions
to try (means). In our works, we thus take the hypothesis
that tasks can be hierarchically related, some may be con-
sidered as subtasks of more complex ones (’hierarchically
organised tasks´). We conjecture that this hierarchy can help
bootstrap the learning, by transfer of knowledge from simple
to complex tasks.

Indeed, when given a task hierarchy, the robot can ex-
ploit this domain knowledge to reuse previously acquired
skills to build more complex ones for tool use, as shown in
[13, 8]. Approaches for hierarchical multi task learning with
neural networks have also been proposed, such as Hierarchi-
cal DQN [18], that uses intrinsic motivation to train a neural
network in a fixed hierarchical manner.

To depend less on domain knowledge, the works pre-
sented in this article seek to learn the hierarchy between
tasks, by exploring the different combinations between tasks.
While learning the dependencies between tasks, we show in
[11], that reusing the knowledge of simple tasks as subgoals
for more complex tasks indeed greatly reduced the explo-
ration, and in [21], that planning can be used in combination
of emerging hierarchical models of tasks.

1.3 Intrinsic Motivation as an Exploration Heuristic

To allow multi-task learning and overcome the limitation of
domain knowledge such as the reward shaping of an extrin-
sic reward, Universal Value Function Approximators (UVFA)
[32] have been developed, letting the reward function be
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parametrised. Furthermore, developmental methods have pro-
posed to transpose into algorithms the notion of intrinsic
motivation, that has been outlined as a key mechanism for
exploration [22]. These methods use an intrinsic reward func-
tion that is not shaped to fit a specific task but is general to
all tasks the robot will face and thus tending towards life-
long learning. This approach is called intrinsic motivation –
or artificial curiosity – and may be seen as a particular case
of reinforcement learning using an intrinsic reward function.

Methods based on Q-Learning and intrinsic motivation
have been proposed in [39] for discrete environments. The
reward obtained by the agent depends on how much new
information have been acquired. Other methods such as al-
gorithms IAC [31] and RIAC [2], used intrinsic motivation to
explore the action space of the robot, based on estimations of
prediction progress. More recently Baranes and Oudeyer [3]
presented the SAGG-RIAC algorithm, using goal-babbling
to generate goals in order to explore the outcome space –
inspired by how infants generate and explore goals by them-
selves. More recently, IMGEP [14], GEP-GP [6] and CURI-
OUS [5] have combined intrinsic motivation and goal bab-
bling with deep neural networks and replay mechanisms.

We ground our studies in cognitive developmental robotics
and aim for a robot capable of discovering and learning
multiple tasks as well as its curriculum with compound
actions (sequences of actions) leveraging relationship be-
tween tasks and exploration based on intrinsic motivation.
In this paper, we present our research on the emergence of
representations of the task hierarchy. We present the algo-
rithms we developed for robots to learn multiple tasks in
curriculum learning based on the heuristic of intrinsic mo-
tivation. The main outcome of these works is a representa-
tion of compound actions for life-long reinforcement learn-
ing algorithms to learn multiple control tasks by transfer of
knowledge. We propose in this paper a common framework
of three algorithms which proved efficient for manipulation
tasks and emergence of affordances. In the following sec-
tions, we present the approaches we investigated :

– how knowledge from easier tasks can be transferred to
complex task once the robot learns their relationship?

– how a robot can discover new learnable tasks from which
to transfer knowledge to more complex tasks?

– how human demonstrations can be beneficial to an active
learning robot tackling multiple control tasks?

2 Framework for Learning Tasks of Various
Complexities

In this section, we propose a formalisation of the problem of
learning compound actions to achieve hierarchically organ-
ised tasks, and propose a framework for algorithms based on
intrinsic motivation to learn the curriculum.

2.1 Formalisation

Let us consider a robot interacting with a non-rewarding en-
vironment by performing sequences of motions of unbounded
length in order to induce changes in its surroundings.

Each of these motions is named a primitive action, de-
scribed by a parametrised function with p parameters: a ∈
A ⊂ Rp. We call A the primitive action space. Our robot
can perform sequences of primitive actions. Let a compound
action be a sequence of any length n ∈ N primitive actions,
and be described by n ∗ p parameters : a = [a1, . . . , an] ∈
An. Thus the action space exploitable by the robot is a con-
tinuous space of infinite dimensionality AN ⊂ RN.

The actions performed by the robot have consequences
on its environment, which we call outcomes ω ∈ Ω, where
Ω is a subspace of the state space S defining the control
tasks to learn. Once the robot knows how to cause an out-
come ω, we say the outcome is then controllable. The set
of controllable outcomes is Ωcontrollable ⊂ Ω and this set
changes as the robot learns new tasks. For convenience, we
define the controllable space C = A∪Ωcontrollable, regroup-
ing both primitive actions A and observables that may be
controlled, Ωcontrollable.

The robot learns tasks T each mapping controllable c ∈
CT ⊂ C and outcomes ω ∈ ΩT ⊂ Ω within a given con-
text s ∈ ST ⊂ S. More formally, a task is a set of : a for-
ward model MT : (ST , CT ) → ΩT and an inverse model
LT : (ST , ΩT ) → CT . The forward model is used to pre-
dict the observable consequence ω̃ of a controllable c in a
given context s. Conversely, the inverse model is used to es-
timate a controllable c̃ to be performed in a given context s
to induce a goal observable state ω as a result of c̃.

These models are trained on the data acquired by the
robot all along its exploration and recorded in its dataset D.
We define a strategy σ any process enabling the choice of
a type of exploration or selection of a source of data. For
instance, we wlll consider autonomous exploration strategy
or imitation learning strategy.

Let us also note H the hierarchy of the models used by
our robot. As our robot also learns this hierarchy, H varies
along time. Its representation will be detailed in section 2.3.

2.2 Algorithmic Architecture

We propose a generic algorithm SGIM-SAHT to learn and
then take advantage of task hierarchy to solve increasingly
complex tasks.

The SGIM-SAHT algorithm learns by episodes in which
a task T to work on, a goal outcome ωg ∈ ΩT and a strat-
egy σ have been selected. The selected strategy σ applied
to the chosen goal outcome ωg choooses a sequence of con-
trollables lc to try to reach the goal (Alg.1, l.3).
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Fig. 4: The SGIM-SAHT algorithmic architecture

This sequence of controllables lc = [c1, . . . , cm] is bro-
ken down in a compound action a = [a1, . . . , an] ∈ AN,
to be executed by the robot. The outcomes reached in the
environment ωr are recorded in the memory, along with the
primitive actions and the built controllables sequence (Alg.1,
l.4). This breakdown process is potentially recursive, based
on the learned hierarchy between tasks.

Then, it computes its competence on the outcomes reached
with hindsight experience replay. The measure depends on
the Euclidean distance between the goal outcome ωg and the
reached outcome ωr (Alg.1, l.5). Its exact definition depends
on the implementation, and is detailed in [11, 21].

The memory and competence are used to update the mod-
els MT and LT , and the hierarchy of modelsH (Alg.1, l.6).
More importantly, the learner updates its interest map, by
computing the interest of the goal outcome for the used strat-
egy interest(ωg, σ). This interest depends on the progress
measure p(ωg) which is the derivative of the competence.

The learner then uses these interest measures to partition
the outcome spaceΩ in regionsRi of high and low progress.
This process is described in detail in [28]. In the beginning
of the next episode, the learner chooses the strategy, model
and goal outcome that could bring the most progress, ac-
cording to the updated interest map.

Algorithm 1 SGIM-SAHT
Input: the different strategies σ1, ..., σn
Input: the initial model hierarchy H
Initialization: partition of outcome spaces R←

⊔
i{Ωi}

Initialization: episodic memory Memory← ∅
1: loop
2: ωg, σ,M ← Select Goal Outcome, Strategy & Model(R,H)
3: lc ← Execute Strategy(σ, ωg)
4: D ← (ωr, a, lc)← Execute Sequence(lc)
5: (competence(ωg), competence(ωr)) ← Compute Compe-

tence (ωg, ωr)
6: Update M,H with (D, competence(ωg), competence(ωr)
7: Ri ← Update Outcome and Strategy Interest Map(R,D, ωg)
8: end loop

2.3 Task Hierarchy Representation

The idea of SGIM-SAHT is to use a hierarchical represen-
tation of the outcome and controllable spaces, to outline the

dependencies between tasks to help the reuse of previous
knowledge. In our works, we introduce two rrepresentations
called Procedure and CHIME.

The first is a goal-directed representation of action se-
quences in the form of sequences of subgoals, that enable
transfer of knowledge between inter-related tasks, beyond
simple hindsight replay. It is a temporally abstract repre-
sentation of succession of actions that enable the learning
agent to discover the task hierarchy and exploit the policy
learned for previous tasks to learn the policy of new com-
plex tasks. We define procedures as a way to encourage the
robot to reuse previously learned tasks, and chain them to
build more complex ones. More formally, a procedure is
defined as a succession of previously known outcomes
(ω1, ω2, ..., ωn) ∈ Ωn. The definition of procedures is recur-
sive and the succession is unbounded.The procedure space is
thus simply ΩN. The definition of the procedure space only
depends on the outcome space. But the valid procedures,
representing the real dependencies between tasks, depend on
each application case. Thus the learning agent can explore
the procedure space to test which procedures are valid.

Fig. 5: Illustration of a procedure for setup fig.1. To make a drawing ωg between
points (xa, ya) and (xb, yb), a robot can recruit subtasks consisting in (ωi) moving
the pen to (xa, ya), then (ωj ) moving the pen to (xb, yb). These subtasks will be
completed respectively with actions ai and aj .

Executing a procedure (ω1, ω1, ..., ωn) means building
the action sequence a corresponding to the succession of ac-
tions ai, i ∈ J1, nK (potentially action sequences as well)
and execute it (where the ai reach best the ωi ∀i ∈ J1, nK
respectively). Fig. 5 illustrates this idea of task hierarchy.

Fig. 6: Illustration of nested models for setup fig.3. To push an object, the robot needs
to control its position, and therefore command its wheel.

The procedures representation is based on a static set of
controllable and outcome spaces.

In comparison, the CHIME hierarchical representation
is based on a dynamic set of controllable and outcome
spaces and the emergence of nested models. It is con-
structed using simple modelsM((ST , Ci)→ Ωj) which can
rely on others: lower models map outcomes to actions while
higher models map them to other outcomes that should be
reached. For instance in the setup3 (fig.3), the robot can
move itself with the model (M0 : wheelCommand ∈ A →
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(x0, y0) ∈ Ω0 ) and it can learn that the position (x1, y1)

of the object pushed depends on its own position (M1 :

(x0, y0) ∈ Ω0 → (x1, y1) ∈ Ω1. The combination of the
nested modelsM0 andM1 enable the robot to control (x1, y1)
with its wheel commands (fig.6). Contrarily to SGIM-PB,
only primitive actions are learned directly. Compound ac-
tions are the result of planning that constructs sequences
of actions from these learned primitives. At the beginning
H = ∅, no model is present, and the robot chooses itself
what model to create or modify: if Ci seems to be highly
correlated to Ωj it may create the model M : Ci → Ωj .

3 Transfer of knowledge to increasingly complex tasks
by discovering the hierarchy of tasks

To learn the hierarchyH between tasks, we proposed in [10]
an implementation, IM-PB (Intrinsically Motivated Proce-
dure Babbling) based on procedures and the identification
among all possible dependencies, of those that are valid.

3.1 Learn Task Hierarchy to Adapt the Length of Actions

The experiments on setups of fig.1,2 in [9, 11] show that
an intrinsically motivated learner is capable of learning se-
quences of motor actions. Intrinsic motivation indeed guides
the exploration of the action space, the task space and the
procedure space to find a curriculum from simple to com-
plex tasks. IM-PB takes advantage of the dependencies be-
tween tasks. It explores the procedure space to learn these
dependencies. During the learning phase, results show that
the robot explores mainly the action space for simple tasks,
and it explores considerably more the procedure space for
complex hierarchical tasks. Thus it implicitly understands
that simple tasks do not need to be decomposed into sub-
tasks and can be reached directly by action primitives. On
the contrary for complex tasks, it is more advantageous to
seek which subtasks to reuse. On the test phase, the robot
uses mainly the decomposition into subgoals correctly, as
we designed our setup. Furthermore, It can also adapt the
length of its action sequence to the task to achieve: the re-
sults show that the length of the sequence of actions in-
creases as the complexity of the task increases in terms of its
hierarchy. Combining these procedures with the learning
of simple actions to complete simple tasks, it can build
sequences of actions to achieve complex tasks.

We showed that the robot can take advantage of the pro-
cedures representation to improve its performance, especially
on high-level tasks. It can also adapt the complexity of its
action sequence to the complexity of the task at hand.

Nevertheless, this adaptation is limited to the first two
levels of task hierarchy, and the learner can not well adapt
this complexity to a deeper hierarchy of tasks. To help the

robot improve its understanding of task dependencies, we
present in section 5 the benefits of active imitation learning.

4 Emergence of Learnable Sub-tasks for Planning a
Complex task

In the previous section, the set of possible tasks (associa-
tion of inputs and outputs) are given, and the robot needs to
choose which are easier to learn first, which are more diffi-
cult to learn, and which tasks can be reused as sub-goals for
more difficult models. But if we do not have a set of sub-
goals given, but have only given a high-dimensional set of
inputs and observable outputs, the transfer of knowledge be-
comes much more difficult, as the agent needs to imagine by
itself new subgoals to learn, and how to reuse these simple
models for more complex tasks. We proposed an algorithm
in [21] to discover learnable models (object features that can
be controlled and control features) in a hierarchical way. It
was applied to wheeled robot with obstacles, movable ob-
jects and spots (fig.3). It proposed an emergence of affor-
dances : the algorithm is able to discover learnable models,
and once the model is learned, its output can be used as in-
put features of more complex models, leading to hierarchical
learning. Learning is based on object features, so capable of
generalising to new objects. Objects are only described by
the physical properties such as colour, height, diameter, and
are generated randomly. This section summarises this work
on emergence of affordances.

4.1 Affordance

The concept of affordance, has been first introduced by Gib-
son in 1977 [15] as a way to characterise physical states in an
action-oriented fashion, in terms of the possible interactions
an agent may have with objects. Even without knowing an
object specifically, seeing visual cues of a handle may sug-
gest possible embodied interactions with unknown objects.

In affordances learning, many approaches have been de-
veloped [16]: for instance, the traversability affordance has
been studied in different works [37, 7, 23]. Likewise, the
grasp affordance is a recurrent topic and various approaches
exist to learn it such as learning based on visual descriptors
or raw image input [26, 19]. However such methods focus
on one, or a fixed number of specific affordances, with no
mechanism adapting it to new or more complex affordances.

In our case, we aim to continual learning of multiple af-
fordances through the interaction with its environment. Thus,
the robot builds itself sensory motor skills using a wide va-
riety of actions. The robot can use actions of unbounded
length and duration, in a continuous action space. Ugur and
Piater [36] proposed an emergence of a hierarchical struc-
ture of affordances. However, affordances were defined as a
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list of discrete effects on objects, and the actions considered
are manually coded actions. We would like to tackle contin-
uous features of affordances and be able to learn compound
actions in continuous action spaces. We extended their work
with intrinsic motivation and planning.

4.2 Affordance Formalisation

To precise the formalisation of section2.1, let us note an af-
fordance model A(Ci, Ωj , Sk), defined formally as a set of:

– an observation predictor predA : Ω 7→ 0, 1 that indi-
cates whether A may be applied to an object o in the
scene, accordingly to its visual or physical properties.

– a forward model MA and an inverse model LA. Both
models learn the relationship between Ci and Ωj know-
ing a context Sk.

4.3 CHIME Implementation

At each episode, the algorithm CHIME explores its envi-
ronment by performing actions, observes the context and
the outcomes obtained and processes the acquired data. One
episode is composed of multiple iterations, and at each iter-
ation one primitive action is performed.

Starting an episode, the robot decides stochastically ei-
ther to explore the action space (Alg.2,l. 10), or the outcome
space by generating a goal to attain during the episode (l. 5).
When choosing the action space (l.10), the robot generates
a random controllable c ∈ C . When choosing to generate a
goal (l. 5), an affordanceA and a goal ωg are selected, based
on an interest metric detailed in [21]. The robot then uses its
inverse models and its planning system to infer a sequence
of controllables c ∈ C to be performed in order to reach ωg .

In both cases, the robot converts c into a sequence of
primitive actions a = [a1, . . . , an] ∈ An.These actions are
then executed by the robot (l. 18) to collect data into D (l.
27).D is used to improve existing affordances (l. 26), decide
whether creating a new affordance is necessary, and update
the intrinsic motivation mapping. These different processes
are described in [21].

4.4 Developmental Emergence of Affordances

The results on setup3 (fig.3) show in [21] that CHIME can
discover non-predefined affordances, and can use unbounded
sequences of learned actions to complete all tasks. Even
without predefinition of possible dependencies between ob-
servables and controllable features, the agent is able to dis-
cover the inputs and outputs of learnable models, and how
they are related to each other. We show that these models
emerge and are learned in a developmental order from the

Algorithm 2 CHIME layout
1: i = 0
2: loop
3: Depisodic = ∅
4: ifH 6= ∅ & Random() ≤ α then
5: A = AffordanceSelection(H)
6: ω = GoalSelection(A)
7: ωg = ObjectSelection(A,ω)
8: c = Plan(ωg)
9: else

10: Ci = RandomControllableSpace(C)
11: cr = RandomValue(Ci)
12: c = [cr]
13: end if
14: a = TransformToPrimitive(c)
15: for ak ∈ a do
16: ωbefore = GetObservations(Ω)
17: ai = [ck] if ck ∈ A else TransformToPrimitive(ck)
18: Execute(ai)
19: ωafter = GetObservations(Ω)
20: ωi = ωafter − ωbefore

21: si = sbefore

22: Depisode ← (ai, ωi, si)
23: i += 1
24: end for
25: UpdateInterestMaps(D,Depisodic)
26: UpdateAffordances(D,Depisodic)
27: D ← Depisodic

28: end loop

lowest to the highest level of hierarchy. We show that plan-
ning based on these emergent models enables the robot to
infer a sequence of actions to complete complex tasks. We
have compared our algorithm to the state of the art to out-
line two main properties : the developmental learning pro-
cess and the hierarchy of the nested models of affordance.

The learning is based on active learning to collect data
through new interactions with the environment, guided by
the heuristics of intrinsic motivation. Once learned, these af-
fordance control models are used to plan complex tasks with
known or unknown objects, by using their physical proper-
ties to decide whether a learned affordance may be applied.

5 Who, What, How to imitate

Beyond mere autonomous intrinsically motivated exploration,
we show that in high dimensional and unbounded task spaces,
the performance is improved even more when the robot can
imitate actions and procedures from teacher demonstrations,
when it actively chooses between self-supervised intrinsic
motivation and imitation learning strategies.

5.1 For primitive actions

Methods taking advantage of human demonstrations have
shown that they can tackle more varied and large goal spaces,
and that the learning could be bootstrapped [29]. The boot-
strapping effect is all the more efficient when the learning
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robot uses active learning based on intrinsic motivation to
choose what to learn, and who, when and how to imitate.
This choice on the source of information, has been called a
strategy. The SGIM-ACTS algorithm proposed in [28] for
multi-task learning has been applied to 3D object recog-
nition by active learning using curiosity-driven manipula-
tion by the iCub robot [30] or sound production and mother
tongue imitation by a vocal tract [27].

5.2 For compound actions

For hierarchically organised tasks, we have studied how the
limitations of IM-PB can be overcome with imitation learn-
ing. We proposed in [11, 9] the implementation SGIM-PB
(Socially Guided Intrinsic Motivation by Procedure Bab-
bling) that merged IM-PB with SGIM-ACTS. It is a strate-
gic learner that can choose at every episode whether to au-
tonomously explore the action or procedure space, but also
whether to request a demonstration of actions or procedures
to one of the available teachers. It can devise its curricu-
lum to learn in a developmental manner different kinds of
tasks. It can choose when imitation learning can be more
beneficial than autonomous exploration, who among the dif-
ferent teachers are most expert in the field of knowledge it
needs at the moment, and what kind of demonstrations is
most beneficial. In terms of imitation learning, SGIM-PB
self-determines who, what and when to imitate. Through
setups fig.1,2, we show that demonstrations of procedures
are beneficial to bootstrap the learning for tasks of the high-
est level of hierarchy. Another conclusion is that demonstra-
tions seem the most beneficial when they are demonstrations
of policies for simple tasks, and when they are indications of
procedures (i.e. subtasks) for the most complex tasks.

6 Conclusion

Through this article, we have presented three implementa-
tions of an algorithmic framework for learning multiple con-
trol tasks through curriculum learning by discovering the de-
pendencies between tasks and exploiting this hierarchy to
transfer knowledge from the easy tasks to the compositional
tasks. Table 1 summarises the properties of IM-PB, SGIM-
PB and CHIME in learning to perform complex tasks with
compound actions, in contrast to the state of the art. While
IM-PB and SGIM-PB rely on a static set of controllable
and outcome features and explore the dependencies between
tasks to learn sequences of actions, CHIME builds dynam-
ically its set of features from emergent control models that
are then used to plan sequences of actions. Whereas IM-PB
and CHIME rely only on autonomous exploration, SGIM-
PB requests different kinds of demonstrations depending on
the complexity of the task to the appropriate teacher. All

Algorithm

R
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C
ont. goal

M
ulti-task

H
ierarchy
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Im
itation

Qlearning [34] Ext. Discrete
Qlearning &
curiosity [39] Int. Primitive

Options [33] Ext. Option
Skill-
chaining [17] Ext. Yes Option

DQN [24] Ext. Discrete
h-DQN [18] Int. Yes Yes Primitive
Asynch.
Actor Critic
[25]

Ext.
self
eval

Primitive

UVFA [32] Ext. Yes
GEP-PG [6] Int. Yes Yes
CURIOUS [5] Int. Yes Yes Primitive
IAC [31]
RIAC [2] Int. Yes Yes Primitive

SAGG-RIAC
[3] Int. Yes Yes Primitive

IMGEP [14] Int. Yes Yes Primitive
SGIM-ACTS
[28] Int. Yes Yes Primitive Yes

IM-PB [10, 11] Int. Yes Yes Yes Proced.
SGIM-PB [9, 11] Int. Yes Yes Yes Proced. Yes
CHIME [21] Int. Yes Yes Yes Planning

Table 1: Comparison between the algorithms on : intrinsic vs extrinsic reward, the goal
space is continuous (parametrised), single task vs multi-task problem, hierarchical
learning, the action representation and whether imitation learning is used.

three rely on a temporally abstract representation of com-
pound actions using task hierarchy. They efficiently manage
to learn them through the discovery of relationships between
tasks to enable transfer of knowledge. We have also pro-
posed a framework unifying both approaches and regroup-
ing similar aspects, such as the intrinsically guided strategi-
cal learning and the hierarchical representation.

In future works, we consider developing an implemen-
tation of the SGIM-SAHT algorithm using all the described
features: learning primitive actions and then planning se-
quences of them, then once learned, optimising directly these
sequences owing to the procedure framework. The emergent
subtasks will reduce the dependency on domain knowledge,
whereas learning a representation of a compound action will
result in better optimised policies and reduce the planning
complexity. We also wish to compare the different perfor-
mances and features from each algorithm on a common ex-
periment.
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