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Abstract. Hemophilia is a rare hemorrhagic disorder caused by clotting factor
deficiencies that leads to a less efficient coagulation system. Treatments of this
pathology rely on a patient’s subjective assessment which reflects a need for a
laboratory assay able to predict the clinical patient phenotype. According to the
literature, global assays such as thrombin generation (TG), are good predictors
of bleeding episodes and therefore seem to be good candidates to fit this need.
Nevertheless, the result of the TG assay, known as thrombogram, is difficult to
interpret for non-expert clinicians. In this paper, we present a machine learning-
based clinical decision support system which goal is to help clinical decision
making. In doing so, we have adopted several approaches in order to evaluate
well-known machine learning algorithms, in terms of accuracy and robustness,
on a thrombogram database generated using numerical simulations. Obtained re-
sults, 95.57% of accuracy using a cascade of a SVM and MLPs to classify all
categories and 98.10% of accuracy for the binary case hemophilia A/B, prove
that our proposal can efficiently diagnose hemophilia.

Keywords: Machine Learning-Based Clinical Decision Support System, Throm-
bin Generation Assay, Hemophilia Diagnosis, Scikit-Learn

1 Introduction

Blood coagulation is a biological phenomenon leading to clot formation that prevents
and stops bleeding after vascular damage. This complex system is regulated by a ju-
dicious equilibrium between the procoagulant pathways that are responsible for clot
formation and the anticoagulant pathways that regulate and inhibit this process. An im-
balance in this equilibrium may cause two kinds of pathologies: thrombotic disorders
and hemorrhagic disorders. Hemophilia is a hemorrhagic disorder caused by deficient
clotting factors that leads to a less efficient coagulation system. The main treatment for
this pathology is replacement therapy that consists of clotting factor concentrate ad-
ministrations. There are well-known laboratory assays that quantify the concentrations
of these proteins in plasma but most of them are bad predictors of a bleeding episode.
Hence, current treatments of hemophilia rely on a patient’s subjective assessment using
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physiological parameters such as a persistence of pain or a decrease of joint mobility.
According to the literature, in particular [24], a global assay called Thrombin Gene-
ration (TG) seems to be a good candidate to predict patient phenotype. The result of
this test, the thrombogram, is a curve that plots thrombin (the key enzyme of the blood
clotting system) concentration over time. Although biologists have identified several
discriminating features from these curves (eg. lag time, time to peak, peak or endoge-
nous thrombin potential), this result is difficult to interpret for non-expert clinicians. To
deal with this issue, Clinical Decision Supports (CDS) can be used. The goal of these
systems is to help clinical decision making in order to increase the quality of care, the
health outcomes but also to improve the cost-benefit by avoiding, in the hemophilia
case, any overdose of clotting factor concentrates. A clinical decision can be diagnostic
elaboration and also therapeutic orientation. In the context of hemophilia, a model able
to individualize therapy (choice of the drug and optimization of its dose) will be really
helpful. We present in this paper a machine learning based CDS system, which goal is
to diagnose hemophilia from thrombin generation curves. Although there is no added
clinical value of hemophilia diagnosis through TG, this work can nevertheless be seen
as a preliminary study. Its aim is to demonstrate the interest of such a system to assist
clinicians in interpreting thrombograms, a first step toward a therapeutic orientation.

This model has to determine the type of hemophilia (A or B) and its severity (Mild,
Moderate, or Severe). Given the machine learning context, efficient learning algorithm
strategies need large data sets. In the clinical domain, obtaining a huge data set is a long,
complex and expensive process. As a consequence, a numerical thrombin generation
model has been used in this study to generate data [10],.

The next section presents the context of this study. Section 3 presents the state of
the art of classification techniques and a summary of the different types of CDS sys-
tems. Section 4 details the approach used in our context. In Section 5, evaluation criteria
are identified and described according to the context; classification results are then pre-
sented. Section 6 contains results analysis. We finally discuss the issues of this work
and the directions for future work in section 7.

2 Context

2.1 Problem Specification

Since the analysis of coagulation curves is a very complicated task and can be source
of serious consequences if misinterpreted, our objective is to create a CDS. Given a
TG curve as an input, this system should be able to provide a complete diagnosis to
clinicians, i.e. determining whether the patient is hemophiliac or not and if so, the type
of hemophilia and its severity. Given a space V of unlabeled data and Y a finite set of
labels, we have X = V ×Y the space of labeled samples. Let D = {x1,x2, ...,xn} be a
dataset composed of n labeled instances, where xi = 〈vi ∈ V , yi ∈ Y 〉 and vi a vector
representing a time series of length m such as vi = {t1, t2, ..., tm}. The objective is to find
the best classifier C which for a given time series v associates a label y such as C (v) = y
with 〈v,y〉 ∈ X .
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2.2 Thrombogram Dataset

In the clinical context, the construction of a large database is a complex, long and expen-
sive process. This is particularly true for the hemophilia context owing to the prevalence
of this disorder. To deal with this difficulty, we have implement a numerical thrombin
generation model in order to generate thrombograms using numerical simulations. As
defined in [10], 41 biochemical reactions between 35 proteins are taken into account to
construct a system of ordinary differential equations. Its resolution provides the throm-
bin concentration overtime which is a thrombogram. The simulation of a hemophilia
patient simply consists of lowering factor VIII (hemophilia A) or factor IX (hemophilia
B) initial concentration. Using artificially generated data provides two advantages in the
clinical domain. As noted before, data acquisition is complicated and very expensive as
it requires finding patients with the corresponding pathologies who are not undergoing
treatment. Furthermore, a numerical model allows us to generate large amounts of data
covering a wide range of thrombogram types.

Our dataset D is made of 7 categories labeled as Y = {Healthy, Hemophiliac A mild,
Hemophiliac A moderate, Hemophiliac A severe, Hemophiliac B mild, Hemophiliac B
moderate, Hemophiliac B severe} and it is composed of 14000 thrombograms with the
following proportions Quantity ={5000, 1500, 1500, 1500, 1500, 1500, 1500} where
each thrombogram contains 181 points. The integration step used to generate these
data is equal to 5 mHz. This dataset provides the ability to perform different types of
classification : healthy or hemophiliac, hemophiliac A/B, hemophiliac severity and all
these categories at once.

2.3 Overview of the Approach

The performance of this CDS is based on its ability to successfully classify thrombo-
grams using machine learning techniques. Therefore, 6 well-known classification mo-
dels have been evaluated in this study. These are presented in the next section. The
different steps of our approach are briefly described below:

1. Firstly, we created a dataset that includes the different categories of hemophilia.
A large amount of thrombograms were generated in order to realize an efficient
training set for each classification method.

2. Secondly, in order to optimize classification performances of each model, we tuned
their hyper-parameters. Because of their interdependence, search algorithms such
as grid search and random search have been applied. In an attempt to improve
results, we also reduce the dimensionality of each thrombogram using feature ex-
traction techniques.

3. Next, we compared the different classification techniques based on established
medical criteria: accuracy, precision, recall and False positive rate.

4. Since some methods perform better on a specific classification set, we developed a
cascade classification technique, using a combination of binary classifiers to sepa-
rate the different types of hemophilia step by step.
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3 State of the Art

3.1 Clinical Decision Support

In the clinical domain, diagnosis mistakes can have disastrous consequences. A CDS
is a system which goal is to advise clinicians during the process of decision making
in order to reduce diagnostic errors. In this domain, two approaches are conceivable:
Knowledge-based CDS and non knowledge-based CDS.

A knowledge-based CDS is composed of inference and association rules established
by experts. Patients’ data is fed into the system to produce a diagnosis suggestion.
MYCIN [21] for example, is a system composed of about 600 rules able to detect severe
infections like bacteremia or meningitis. Systems like Arden Syntax [19] GLIF3 [4]
PROforma [22] were developed to allow health professionals to directly build their own
CDS systems. According to the litterature, there is a plurality of application scope of
this kind of CDS. However, in the domain of coagulation, even though it exists features
regarded as the most discriminant by experts, the interpretation of thrombogram and
therefore the detection of hemophilia and its characteristics remains a challenging task.

Non knowledge-based CDS systems, for their part, use artificial intelligence tech-
niques to associate patterns in the data with pathologies. For instance, Shin et al. created
a system able to detect cancer based on mass spectrometry and machine learning algo-
rithms [20]. Due to the complexity of the thrombogram analysis, application of artificial
intelligence techniques on TG curves seems to be a good option [24]. Therefore, we di-
rected our choice towards non knowledge-based CDS.

3.2 Classification Methods

We want to classify time series using a static approach since all of the TG curves of our
database have the same length. Therefore, an assortment of supervised parametric and
non-parametric techniques can be used for comparison, such as well-known Support
Vector Machines, SVM [18] [8] [26] or K-Nearest Neighbors, KNN [6] which use dis-
tance functions to discriminate categories. Moreover, using a large dataset we can also
correctly perform neural network training using a MultiLayer Perceptron MLP [13] [25].
Although this model is not recent, it forms the basis of the very popular deep learning
techniques. In addition, for the purposes of completeness, we also performed a linear
discriminant analysis LDA and applied the Adaboost [2] and the Decision tree [16]
algorithms. All the classification results presented in this paper were obtained using the
Scikit-Learn framework.

3.3 Extraction Methods

Extracting features from thrombograms and thus, reduce their dimensionality, could
improve classification results. Therefore, we identify several feature extraction tech-
niques. Piecewise Linear Approximation PLA [9], for example, applies the last square
method on segments of the data. The Symbolic Aggregate approXimation algorithm
combined with a Piecewise Trend Approximation, SAX/PTA [7] translates time series
into strings, the SAX method is based on values whereas the PTA is based on slope.
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Thrombograms can also be represented by coefficients, using Discrete Fourier Trans-
form, DFT [1,23] and Discrete Wavelet Transform, DWT [5,15]. The obtained coefficients
contain information in both the temporal and the frequency domain. To perform these
feature extractions, we use the Pyts Python package.

4 Workflow

This section describes in detail the steps of classification performance optimization.

4.1 Hyper-parameter Search

In order to optimize classification performance for each model, we have tuned their
hyper-parameters using search algorithms. In other words, for each type of classifica-
tion, we have optimized the penalty parameter, the kernel function and its associated
coefficients of the SVM classifier. We also searched for the optimal number of layers,
the number of neurons in each hidden layers, the learning rate, the random seed, the
activation function and the solver algorithm for a shallow MLP. In the case of the De-
cision Tree, we have tuned its maximum depth, its maximal number of features and
the minimum number of samples needed to split an internal node or to create a new
leaf node. Moreover, we have taken into consideration the number of nearest neighbors
and the distance metric of the KNN, the number of estimators and the learning rate of
the Adaboost classifier and the solver of the LDA. Given the limited number of these
meta-variables, classical search algorithms are sufficient [12]. A grid search requires
fixing all hyper-parameters to a given value except one, which varies across a finite set
of values. A random search consists in setting all hyper-parameters to random values
chosen in an established range. We initially used a grid search with a logarithmic scale,
in order to query a wider range of values for each hyper-parameter, and to determine
a subset of values. Next, we aimed to reduce this subset by using a second grid search
with a linear scale. Then, we finally tested a large number of random hyper-parameter
values within this subset. This process is used to gradually reduce the subset of possible
hyper-parameter values and allows the system to find one of the best configurations.

4.2 Classification

Thrombograms are fed into the classification algorithms which, in turn, output a class
label (healthy, hemophiliac etc.). As is common in practice, we carry out a k-fold cross-
validation (CV) to train, optimize and evaluate these supervised models. First of all, the
dataset is divided into two parts, taking into consideration the proportions of the label
values. The first one is used for the training phase and the second one for testing. In or-
der to tune each hyper-parameter, the training sub-dataset is then randomly split into k
folds of approximately equal size. A rotation principle in which, k−1 of these folds are
used to train the classifier while the remaining fold is used to validate its performance,
is repeated k times until each fold has been used as a validation dataset [11]. At the end
of this process, when its set of optimal hyper-parameter values has been found, the clas-
sifier is trained on the whole training sub-dataset and evaluated on the remaining part of
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the database. In the clinical context, due to the lack of data induced by the prevalence of
hemophilia disorder, performing a k-fold cross-validation with a high k value could im-
prove the classifier performances. However, the database used in this study is generated
by our numerical model. Large amounts of data covering a wide range of thrombogram
types can be simulated. Therefore, we hypothesized that carrying-out a complex cross-
validation would be unnecessarily computationally expensive. Considering that point,
we use 80% of our numerical database for the training phase and 20% for testing. Then,
the cross-validation is performed with two different numbers of folds : k ∈ {3,10}. The
obtained results are presented and discussed in section 5.

4.3 Features extraction

In order to improve classification, we realized a feature extraction as a preprocessing
step using techniques identified during the state of the art. Each technique was applied
on the thrombogram dataset to reduce their dimensionality and, as a consequence, fa-
cilitate the learning process. For the purposes of comparison, we also used 4 features
regarded as the most discriminant by experts: Time to Peak, Peak, Lag-Time and En-
dogenous Thrombin Potential.

4.4 Cascade

A method can be used to identify all 7 categories in a single classification process.
However, another approach consists in using a cascade of classification models. Some
categories can be pulled out of the dataset by a specific classifier. For example, throm-
bograms of healthy patients can be extracted using a classifier trained on discriminating
healthy patient from hemophiliac. On the remaining hemophiliac sub-dataset we can
then separate hemophiliac A from B using another classifier and so on until all cate-
gories are isolated. With this principle, we can use the best method at each step of the
cascade.

5 Evaluation

To measure the efficiency and the robustness of our system, given the clinical context,
we need to take into account specific criteria, they are presented in this first subsection.
Results obtained are shown in the second one.

5.1 Evaluation criteria

The main objective of a CDS is to help clinicians in the decisions, and thus to reduce
medical errors. The worst possible case is the prediction of an absence of illness for
an infected patient. No measures would therefore be taken to insure the safety of the
patient. Our goal is thus to minimize these cases, they can be measured using the False
Positive Rate (FPR). A second objective is to reduce the quantity of assays used for
pathology detection. This goal is reached by detecting a majority of healthy patients :
Recall. Finally, as we are working with artificially generated thrombograms, data are by
definition clean of experimental noise. One last point is to study the noise robustness of
the selected model.
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5.2 Results

First of all, we have hypothesized in section 4, that carrying-out a complex cross-
validation would be unnecessarily computationally expensive in this study. In order
to test this assumption, we compared results obtained using cross-validation with two
different numbers of folds : k ∈ {3,10}. To that end, an SVM classifier has been trained
to discriminate the Hemophilia A/B case and tuned using a cross-validated grid search.
On the same hardware, the 10-fold cross-validation took approximately 5 times longer
than the 3-fold cross validation. Regarding the CV accuracies, k=10 leads to 98.0±0.4%
and k=3 to 97.8±0.3%. Beyond the fact that these performances are very similar, the
same optimal hyper-parameters values have been found by these two CV-grid search :
polynomial kernel of degree 6 and a low penalty parameter equal to 5. Therefore, the
last step which consists in training the classifier on the whole training sub-dataset leads
to the same accuracy scores on the remaining part of the database : 98,1%. Hence, our
assumption holds true.

Table 1 shows the result obtained with the different classification techniques using
a 3-fold CV without feature extraction techniques. We can observe that SVM performs
the best, above 94.49% for each type of classification. Moreover, it appears that the
discrimination between hemophilia A and B is the most challenging one. Even thought
SVM and MLP obtained high accuracies on this classification, all other methods failed to
correctly discriminate these 2 categories. Regarding these MLPs, the hyper-parameter
tuning phase results in shallow architectures composed of 3 hidden layers at most, opti-
mal learning rates equal to 1e−3, hyperbolic tangent activation function and ’LBFGS’
solver.

Dataset Method Accuracy Recall Precision F-Measure FPR
All

Categories
Decision

Tree
75.00 68.16 67.94 67.97 32.06

Adaboost 56.60 43.14 41.16 42.13 56.86
KNN 78.95 72.68 72.53 72.51 27.47
LDA 90.29 48.67 74.52 58.88 2.77
SVM 94.49 93.17 93.17 93.14 0.91
MLP 90.00 87.14 87.12 87.08 1.63

Healthy /
Hemophiliac

Decision
Tree

97.88 97.78 97.60 97.69 2.40

Adaboost 88.07 87.42 86.95 87.17 13.05
KNN 98.21 97.98 98.13 98.05 1.87
LDA 96.73 97.09 94.04 95.54 3.45
SVM 99.04 98.83 99.06 98.95 1.16
MLP 99.18 99.01 99.22 99.11 0.99

Hemophilia
A/B

Decision
Tree

69.63 69.62 69.64 69.62 30.36

Adaboost 52.85 52.86 52.87 52.81 47.13
KNN 74.37 74.41 74.45 74.37 25.55
LDA 57.53 57.31 57.69 57.50 42.24
SVM 98.1 98.1 98.1 98.1 1.9
MLP 90.83 90.83 90.83 90.83 9.17

Hemophilia
Severity

Decision
Tree

91.66 91.65 91.67 91.66 8.33

Adaboost 84.04 83.87 84.14 84.01 16.13
KNN 93.22 93.21 93.27 93.17 6.73
LDA 92.95 89.48 89.38 89.43 5.31
SVM 96.03 96.03 96.1 96.03 1.98
MLP 96.23 96.23 96.29 96.23 1.88

Table 1. Averaged performance
of each method without feature
extraction techniques. Highest
classification rate, Recall, Pre-
cision and F-measure and low-
est FPR are shown in bold.
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6 Discussion

In this section we compare the performance of each classification method. We also ana-
lyse the impact of using feature extraction and cascade classification. Finally, according
to the identified criteria we present the most accurate method.

6.1 Performance of hemophilia detection

The main objective of this study is to detect hemophilia using thrombograms. Table 1
shows results obtained for the healthy and hemophiliac classification. Decision Tree,
KNN, LDA, SVM and MLP can accurately discriminate thrombograms, their accuracies are
above 96%. We can notice that SVM and MLP are slightly better for this classification.
On the other hand, Adaboost performs relatively worst. In the performance evaluation
section we pointed out that classifying a hemophiliac patient as healthy can have di-
sastrous consequences. MLP outperforms other techniques regarding the False Positive
rate, 0.99%. Moreover, in order to save hemophilia detection tests, we want to identify
a majority of healthy patients, the best Recall is also obtained by MLP, 99.01%. Thus, a
CDS based on a MLP is able to fulfil the two main criteria i.e., avoiding clinical errors
and reducing costs.

6.2 Classification comparison after feature extraction

All classification techniques were also tested on extracted features in order to improve
their performances. However, classification results using these features are less accu-
rate than the ones obtained using whole thrombograms. Regarding the thrombogram
database reduced to the 4 features identified by experts, a SVM obtains 85.81% of accu-
racy to classify All Categories, 98.83% of accuracy for the binary case Healthy/Hemo-
philiac, 83.62% for the Hemophilia A/B case and 95.33% for the Severity. In other
words, this kind of dimensionality reduction results in a 8.7% decrease of accuracy for
the All Categories classifier, 14.5% for the A/B classifier but only around 1% for the
Healthy/Hemophiliac and the Severity classifiers. Results obtained by other techniques
such as PLA, SAX/PTA, DFT and DWT are very similar. These lower results can be ex-
plained by the loss information induce by feature extraction techniques, particularly in
the most challenging case A/B where the whole TG curve seems to be relevant.

6.3 Classification comparison using cascade classification

The cascade classification discriminates thrombograms categories by categories, healthy
and hemophiliac first, hemophiliac A/B next, and finally the hemophilia severity. This
technique allows to use the best classifiers for each classification tasks. We can no-
tice a major contribution brought by the cascade technique. First of all, it allows to
divide the problem and to identify where classification performances were not satis-
fying. Secondly, we incremented the number of classifier required by the system by
decreasing the classification complexity, i.e. the cascade uses binary classifiers, except
for the severity which could also be reduced to a combination of binary classifiers. How-
ever, this kind of approach also have a drawback. In fact, sets of instances received by
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classifiers in the lower levels of the cascade already contains some misclassified throm-
bograms, thus errors made early in the process increase error rates of the following
steps. In comparison to a single multiclass-SVM, the global performance achieved by
a cascade composed of the best classifiers : a SVM for the A/B case and two MLPs for
the others, is equal to 95.57%. In other words, this cascade principle results in a 1.08%
increase of accuracy.

6.4 Complete diagnosis performance

In order to provide a complete diagnosis to clinicians specifying the type and the seve-
rity of the hemophilia, we consider results obtained for the All Categories classification
with a cascade composed of a SVM and two MLPs. It achieves 95.57% of accuracy on
this classification. We can therefore create a CDS able to provide a complete accurate
diagnosis to clinicians.

6.5 Robustness

As mentioned in the previous sections, the database used in this study is composed of
artificially generated thrombograms. Hence, data are clean of noise and are bound to be
different than experimental ones. In order to approach an actual application, we added
a Gaussian noise to our data with the variance var(X) = k in which X is a centered
Gaussian distribution and k ∈ {0,5,10,15,20}. It should be noted that the variance of
this kind of experimental data usually seems to be in the range [5,10]. To determine
influence of this external parameter, some metrics were computed using noised datasets
for the training, tuning and testing phases of these models. We focused on the two most
challenging cases : Hemophilia A/B and All Categories and therefore, we used SVM
classifiers. Given the fact that hyper-parameters are closely linked to the type of data
used, we applied the process of hyper-parameter search mentioned in the previous sec-
tion for each level of noise. Figure 1 shows that the addition of noise strongly degrades
the entire model performance. Obviously, noise addition using var = 20 resulted in a
23.8% decrease of accuracy for the All Categories classifier, 34.7% for the A/B classi-
fier. The poor performances induced by the noise addition can be explained using the
table 1. All used algorithms accurately classify Healthy/Hemophiliac and severity types
because thrombograms are really different for these categories. Yet, it’s not the case for
hemophiliac A/B which is more complex to discriminate. In fact, noise addition in-
creases similarities between thrombograms, particularly for thrombograms which have
weak amplitude (severe hemophilia).

These results point out the well-known difficulty of SVM to work on raw data, with-
out preprocessing step [14]. To go beyond this limit, we decided to smooth and fit noised
data using a median filter and a Savitzky-Golay filter with a constant window size. We
transposed these results in the table 2. Yet, due to the constant window size, this pro-
cess alters the shape of the peak and thus, no classification improvement has been noted
(Figure 2).

In a second experiment, we also computed learning curves in which the quantity of
noised data used for the training phase varies from 1-13999. As we can see in the figure
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1, noise addition does not affect the quantity of needed data for training since only the
amplitude is impacted and not the convergence speed.
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Fig. 1. The influence of noise on the hemophi-
liac A/B classifier performance
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Fig. 2. Instance of a hemophiliac A mild illus-
trating the difference between raw, noised and
filtered thrombograms

smooth & fit process Variance Accuracy
No. hemophiliac B
classified as hemophiliac A

FPR
No. hemophiliac A
classified as hemophiliac A

Recall

Without

0 98.1 17/900 1.9 883/900 98.1
5 79.74 194/900 21.63 706/900 81.11

10 72.15 244/900 27.19 656/900 71.48
15 67.44 268/900 29.78 632/900 64.67
20 63.44 333/900 37.04 567/900 63.93

With

0 95.22 40/900 4.52 860/900 94.96
5 81.74 164/900 18.30 736/900 81.78

10 71.22 266/900 29.56 634/900 72
15 66.78 294/900 32.67 606/900 66.22
20 61.78 325/900 36.22 575/900 59.78

Table 2. Noise robustness and application of a Savitzky-Golay and a median filter whose window
sizes are size = 9 (P : Hemophiliac B, N : Hemophiliac A)

7 Conclusion

This final section highlights issues of a CDS to detect hemophilia and suggests ways
for further research.

Hemophilia is a rare bleeding disorder that leads to a less efficient coagulation sys-
tem. The main treatment for this pathology is a replacement therapy that consists of
clotting factor concentrate administrations. Even though well-known biological assays
that quantify the concentrations of these factors in plasma exist, there are not good
predictors of bleeding episodes. Therefore, treatments rely on a patient’s subjective as-
sessment which reflects a need for a laboratory assay able to predict the clinical patient
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phenotype. According to the literature, a global assays called TG appears as a good
candidate to fit this need. However, its results are difficult to interpret for non-expert
clinicians and that is why we suggested a non knowledge-based CDS. In this study,
we only focussed on one of CDS application : the diagnostic elaboration. Given the
obtained results, this work points out the benefit of such an approach.

A cascade composed of a SVM and two MLPs achieved the best results according
to our evaluation criteria and provides an accurate global classification rate (95.57%).
Moreover, it is able to accurately diagnose the hemophilia, its type and its severity,
99.18%, 98,1% and 96.23% respectively. Regarding the robustness of our model, adding
a Gaussian noise strongly degrades the performance of the hemophiliac A/B classifier
which could create an issue within an experimental context application. Moreover, as
seen in the previous section, despite the theoretical interest of our noise filter, obtained
results are disappointing.

For a first approach using machine learning techniques in the field of blood coagula-
tion, few methods were used. Plenty of other well-known techniques could be tested on
thrombograms. HMM [27] and DTW [17] generally perform well on time series and could
appear as a great contribution to this work. Nevertheless, this kind of techniques have
limitations like the SVM to deal with raw data. So, two options can be considered: (1)
First of all, we could go more in depth during the smoothing process using a dynamic
size window rather than a static one. This could potentially reduce the issue of peak
alteration, and therefore increase the noise robustness of our model. (2) We could use
deep learning methods. The main advantage of deep architectures, owing to their large
number of hidden layers and the no-linearity associated to each ones, is their ability to
extract highly abstract features from data. In addition, they can deal with very different
types of data and can be applied to supervised but also unsupervised problems [3].

This study showed the ability of machine learning techniques to diagnose hemophilia.
Obtained results open doors for other clinical application in the domain of blood illness,
such as thrombophilia diagnosis and therapeutic orientation.
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