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Abstract—The goal of our work is to model believable
virtual actors. Within the framework of learning by
imitation, the virtual actor must be able to modify its
prototypic behavior for miming in its imaginary world
the observed behavior of a model which can be another
virtual actor or an avatar controlled by a human op-
erator. Each virtual actor has sensors for perceiving
and effectors for acting and also a library of prototypic
behaviors specified by FCMs for simulating it-self and
others in its imaginary space. FCMs can give true per-
ception & emotion. We propose a FCM-learning al-
gorithm using meta-knowledge about learning in order
to imitate a given behavior in real-time. The virtual
actor autonomously selects training periods. This se-
lection is inspired by neurophysiological experiments
about active perception and hippocampus. The imple-
mentations undertaken in the multi-agent environment
oRis are related to a sheepdog gathering sheep and to
the adaptation of a virtual sailor to a given sailing ship.
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I. Introduction

Virtual worlds are peopled with autonomous enti-
ties improvising in free interaction [Hayes-Roth 96].
The goal of our work is to model believable virtual
actors [Bates 92]. Autonomous entity is one of the
keys for believable virtual human creation [Thalmann
00]. A virtual actor is an autonomous agent (or ani-
mat [Meyer 91]) having its own culture, personality,
emotions. Our virtual actors have sensors for per-
ceiving, effectors for acting and also a library of pro-
totypic behaviors specified by Fuzzy Cognitive Maps
(FCMs) [Parenthoën 01]. Behavioral control of intelli-
gent characters needs explicit knowledge [Granieri 95],
[Funge 99]. FCMs contain not only declarative but
also explicit knowledge. An expert in collabaration
with an ergonomicist can provide the prototypes of
such FCMs [Parenthoën 02]. Connection between the
autonomous agent and FCM results by fuzzyfication of
sensors which determines the extern activations of the
perceptive concepts in this FCM, while defuzzyfication
of internal activations of motor concept fixes effectors.
Internal concepts can translate emotions and are used

for FCM dynamics calculus. FCM models perception
(versus pure sensation) thanks to links fromwards in-
ternal towards perceptive concepts. A virtual actor
has also an imaginary world, in which it can simulate
its own behavior but also prototypic behavior of other
actors. It can use this imaginary space to choose ap-
propriate strategy between possible ones, not by logi-
cally reasoning but by simulating its behavioral model
[Maffre 01]. As underlined A.C. Schultz 8 years ago,
learning initially takes place under simulation [Schultz
96]. Within the framework of learning by imitation
[Gallese 00], [Mataric 01], the virtual actor must be
able to modify its prototypic behavior for miming in
its imaginary world the observed behavior of a model
which can be another virtual actor or an avatar con-
trolled by a human operator. As our agent uses FCMs
for specifying prototypic perceptive behaviors, we pro-
pose an algorithm for learning the weights of the causal
links between concepts in a prototypic FCM in order
to imitate a given behavior, without modifying nei-
ther the FCM influence graph structure, neither the
sensor fuzzyfication, nor the motor concept defuzzyfi-
cation. This modification of causal links between con-
cepts uses meta-knowledge about learning.

Our virtual actor autonomously selects training pe-
riods using active perception [Berthoz 97]. The “per-
ception as anticipation”-approach fuses perception-
decision-action cycle into one consistant neurophysio-
logical process. Researchers in neuroinformatics have
developped such artificial neural process applied to
animats [Heinze 01]. Neurophysiologists have demon-
strated the importance of hippocampus in prediction
of trajectories [Buzsaki 92], [Lisman 95] and recently
the hippocampal structure has inspired cybernetics:
hippocampus is used to learn, store and predict transi-
tions between multimodal states, furthermore it is not
also crucial for novelty detection but it also merges ex-
plicit planning and sensorimotor functions in a single
and coherent system [Gaussier 02], [Trullier 00].

Next section explains how a virtual actor can adapt
prototypic behavior in its imaginary world in real time
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to imitate observed behavior. It describes FCM learn-
ing algorithm, studies its complexity and its conver-
gence. An application implemented in the multi-agent
environment oRis [Harrouet 00] deals with sheepdog
gathering sheep. Section III proposes active percep-
tion as a basis for autonomous action learning and an
implementation relating to the adaptation of a proto-
typic virtual sailor to a given sailing ship.

II. Learning per Imitation

This section presents learning algorithm for virtual
FCM-controlled actors. We will describe a method al-
lowing an adaptation per imitation in real-time. The
actor observes the model and simulates the behavior of
an image-actor having to follow this model. This im-
age can be its own image, or the one of another actor
simulated by prototypic FCMs from its library. The
virtual actor endeavours to imitate in its imaginary
world the behavior of a model by adapting its FCMs.
This model can be an autonomous virtual actor or an
avatar controlled by a human operator. The imitator
has only access to a model sensor/effector estimation
by observation. The imitator must have it-self sensors
allowing this estimate. It makes the assumption that
the behavior of the model is controllable by a one of
its modified prototypic FCMs from its library. Figure
1 show two examples of such prototypes: one for a vir-
tual sheepdog imagining prey, the other for a virtual
helmsman selecting affordances. It has then to iden-
tify model character by modifying the image FCM link
matrix.
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These FCMs resuming expert’s knowledge are prototypes. A sheep-
dog uses the FCM in (a) while gathering, for imagining sheep be-
havior then adopting a suitable stategy. It is a not only sensitive
but perceptive FCM, thanks to links (bold) from internal concept
fear towards perceptive concepts: a high γ (resp. λ) gives a stressed
(resp. paranoiac) sheep. The FCM in (b) drives the virtual helms-
man’s modality of action. It is used by the virtual helmsman during
sailing for selecting affordance among possible ones.

Fig. 1. Prototypic FCMs for Virtual Actors

An adaptive FCM must modify the weights of causal
links between its concepts according to gathered data
from the external world, so that its dynamics gen-
erate the desired behavior. Kosko has proposed two
different Hebb type methods [Hebb 49] for an expert
given limit cycle learning by FCM [Kosko 88]. One is
based on the correlations between activations [Kosko

92], the other on a correlation of their variations (dif-
ferential hebbian learning) [Dickerson 94]. The advan-
tage of differential learning is that higher order causal
relations can be learned if it correlates multiple cause
changes with effect changes. Kosko’s differential heb-
bian learning algorithm on the one hand is based on
the knowledge of a limit cycle including all the con-
cepts and provided by an expert, on the other hand
makes the assumption that external forced activations
are constant. However external activations evolve in
time and we can not have such a limit cycle, because
only estimated model sensors and effectors can be ob-
served: a FCM having generated them is not avail-
able; a human operator can lead this model. The actor
will simulate an image of model behavior in its imag-
inary space with an adaptive FCM, and will compare
the image-effector with the model-effector estimation
to update this FCM. In this section, it is the model
which decides the training period, but we’ll see in the
next section how to autonomize the learning period
choise using hippocampal inspiration. At the end of
the training period, the FCM adapted to the model
imitation replaces the initial prototype.

The algorithm of adaptation that we propose is an
iterative cycle in four stages between t and t + 1:

1. estimation of model-sensors and model-effectors are
measured,
2. sensor are fuzzyfied into perceptive concept exter-
nal activations, calculation of the FCM dynamics uses
equation (1) with N equals the lenght of the longest
acyclic path added to the length of the longest cycle in
the influence graph, then image-effectors are obtained
by motor concept internal activation defuzzyfication,
3. comparison between image-effectors and model-
effectors is performed, and formula (2) generates a set
of desired pseudo-activations by going up the influ-
ence graph from motor concepts towards perceptive
concepts without modifying links and by using meta-
knowledge about learning,
4. FCM causal links are updated by applying discret
differential hebbian learning to the sequence corre-
sponding to the passage from FCM activations towards
desired pseudo-activations, according to learning law
(3).

The first stage consists in observation: imitator mea-
sures features about the model, which are necessary
for model-sensor and model-effector estimations. We
make the assumption that these features are available
for the imitator.
The second stage corresponds simply to the usual
use of a FCM for the control of a virtual actor, and
determines image-actor FCM activations at moment
t + δt ≈ t in the imaginary world, according to model-
sensor estimation and FCM dynamics with N itera-
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tions:

a(t+ I
N δt) = S(G

(
f(t), LT · a(t+ I−1

N δt)
)
)

for I = 1, · · · , N ; δt << 1 (1)

n being FCM concept number, f = (fi)i∈[[1,n]] exter-
nal activations coming from sensor fuzzyfication, a=
(ai)i∈[[1,n]] internal activations, L=(Lij)(i,j)∈[[1,n]]2 link
matrix, G : (IR2)n → IRn a comparison operator and S
a standardization function transforming each coordo-
nate by the sigmoidal function: σ(x)= 1+δ

1+e−ρ(x−a0) − δ,
with parameters (δ, ρ, a0) ∈ {0, 1} × IR+

∗ ×IR. FCM
motor concept defuzzyfication at moment t + δt ≈ t
provides image-effectors. For more clearness, we note
a the resulting internal activations a(t + δt) in next
paragraphs.
The third stage recursivly generates sets of pseudo-
activations (Pi)i∈[[1,n]] translating an orientation for
FCM dynamics. The principle consists in going up the
influence graph from motor concepts towards percep-
tive concepts proposing pseudo-activation values ac-
cording to meta-knowledge about learning and bring-
ing image-effectors closer to model-effectors estima-
tion. Let’s detail the recursive proccess:
Initialisation m = 0: entering into the FCM from ef-
fectors. A set I0 represents indices of concepts de-
fuzzyfied onto image-effectors. For each i ∈ I0, we
apply the decision learning meta-knowledge: two po-
tential pseudo-activations p±i = σ(a0± αi

2ρ ) simulate an
active/inactive concept Ci, αi ≥ 1 translating choise
radicality. With the ai value, that makes 3 possible
pseudo-activations pi = ai, p+

i or p−i for each Ci.
The 3CardI0 combinations are defuzzyfied, compared
to model-effector estimation and the best combination
(p0,{}

i )i∈I0 is kept (the 0 deals with defuzzyfication and
the {} is a set of futur labels). ∀i ∈ I0, Pi = {p0,{}

i }.
The others pseudo-activations sets (Pi)i∈([[1,n]]\I0) are
empty.
Progression from m to m + 1: Let Im ⊂ [[1, n]]
be the indice set of concepts which desired pseudo-
activation set is not empty. For i ∈ Im, note ai

(reps. fi) internal (resp. extern) activation of concept
Ci, Pi = {pk1,{···}

i , · · · , pkL,{···}
i } its desired pseudo-

activation set which cardinal equals L and J ⊂ [[1, n]]
the indice set of concepts which are causes for the con-
cept Ci (i.e.:Lji 6= 0) and such that the arc from Cj to
Ci has not been studied: ∀λ ∈ [[1, L]], j 6= kλ. We will
calculate pseudo-activations Pj for j ∈ J as follows:

• For each j ∈ J , we apply the decision learning meta-
knowledge: two potential pseudo-activations p+

j and
p−j are calculated (2) so that their influence on ai

causes a clear choise between an active Ci or an in-
active Ci, taking into account extern activations, with

α ≥ 1 translating the choice radicality:

p±j =


a0 ± α

2ρ
− fi −

∑

l 6=j

Llial


 /Lji (2)

• Then we select randomly a λ ∈ [[1, L]]. That
gives a p

kλ,{···}
i ∈ Pi and we choose among the

3CardJ possible combinations pi
j = aj , p+

j or p−j for

j ∈ J , the one p
i,{···,kλ}
j which gives a Ci activation

σ
(
Gi(fi,

∑
j Ljip

i
j)

)
the nearest to p

kλ,{···}
i ,

• Thus we obtain a new set of concept indices with
a not empty desired pseudo-activation set: Im+1 =
Im ∪ J with Pj = Pj ∪ {pi,{···,kλ}

j }for j ∈ J .
Termination: if for each i ∈ Im, the corresponding J
set is empty, every arc belonging to paths going into
(Ci)i∈I0 has been studied.
The forth & last stage modifies FCM link weights,
in order to direct its dynamics towards a behavior ap-
proaching the model. Contrary to Kosko who uses a
cycling cycle and a learning rate decreasing with time
(see [Dickerson 94] page 186), we make only one stage
from intenal activations a to link corresponding de-
sired pseudo-activations p for the weight modification
without cycling and preserve a constant learning rate
r(t) = R, in order to ensure a strong adaptivity for our
virtual actor. Formally, noting A ⊂ [[1, n]]2 the arc set
of the FCM, β ∈]0; 1+δ[ a sensitivity level and s : IR →
{−1, 0, 1} the discrete function s(x) = −1, 0 or 1 re-
spectivly if respectivly x ≤ −β, −β < x < β or x ≥ β,
the learning algorithm follows the equations:

∀(i, j) ∈ A, if ∃k ∈ [[0, n]], p
k,{···,i,···}
j ∈ Pj ,

we take such a k and :



∆i = s(pj,{···}
i − ai), ∆j = s(pk,{···,i,···}

j − aj)

Lij (t+1)=
∣∣∣∣
Lij (t) + R(∆i∆j − Lij (t)) , if ∆i 6= 0
Lij (t) , if ∆i = 0

else Aij 6∈ {path to effectors} : Lij (t+1) = Lij (t)

(3)
We also keep some link weights inside given bondaries
Bij = [Lmin

ij , Lmax
ij ] so that the adapted behavior re-

mains believable according to the expert: if Lij (t+1) <
Lmin

ij then Lij (t+1) = Lmin
ij and if Lij (t+1) > Lmax

ij then
Lij (t+1) = Lmax

ij . This allows imitation while preserv-
ing imitator’s personality and emotions.

We have implemented this algorithm in the multi-
agent environment oRis [Harrouet 00] applied to
sheepdogs gathering sheep. A dog simulates herding
in its imaginary space using for example two view-
ing strategies: one associated to vision restricted to a
closed neighborhood (dog only takes care about sheep
acting in a ten meters raduis circle), the other to
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the largest vision possible (dog takes care about ev-
ery sheep). The results of these simulations are com-
pared in term of best gathering, then the dog adopts
the more suitable stategy to gather sheep. If the herd
is divided into two distant groups for example, dog
adopts after a simulation in its imaginary world the
restricted vision strategy to prevent it to run uneffi-
ciently between the two groups. For accuracy in the
imaginary world, our virtual sheepdog has to identify
its prey prototype shown in figure 1a to a given sheep
character. It can also have to learn a way of gath-
ering by the imitation of a shepherd-controlled model
or another dog, then the prototypic FCM used in its
imaginary world is its own FCM.

In practice, the experiments undertaken on sheep-
dog show that convergence occurs and that the sheep-
dog is able to adapt its prototypic FCMs to specific
sheep and dogs. We could modify the learning rate
through time, as a decreasing sequence tending to-
wards zero and with a diverging to infinity associated
series. That would ensure a theoretical FCM weight
convergence, but the adaptivity would be less and less
strong with the age of the actor.

The complexity of this algorithm is a polynomial
function of the number n of concepts given by the ex-
pert, and even a O(n). Without paying attention, one
could believe that this algorithm has an exponential
complexity but it hasn’t. Indeed, for an expert, the
causes of a concept are always in a very limited num-
ber (seldom more than five), therefore the number of
arcs arriving on each concept is rised by M (M ≈ 5),
ie: CardJ ≤ M . 3CardJ is thus raised in practice,
whatever the number of concepts implied in the FCM.
The same applies to the calculation of FCM dynamics
which complexity is a O(n) whereas could seem to be
a O(n2), thanks to the great number of zeros in the
link matrix; the number of not null links in a column
being no more than M , whatever could be n. This
algorithm can thus be implemented for a use in real
time.

III. Action Learning

We include the previous algorithm in an active per-
ception structure, enabling a virtual actor to choose
alone the learning periods, while imitating a hu-
man operator performing an action. Then we briefly
present action learning applied to the implementation
of virtual sailor.

A. Active Perception for Action Learning

Brain can be considered as a biological simulator
which predicts using its memory and making hypoth-
esis about inner modeling of the phenomenon. Let’s
take a sportman as an example: he will mentally and

predictivly go though the evens of the performance
in the same time he will performe it, and sporadi-
cally verify his sensors’ states. The inner simulation
of movement is made easier by a neuronal mecanism
of inhibition. Brain possesses a biological modeling of
the action to be performed. It does not only compare
sensorial with memorised informations, it also uses an-
ticipatory mecanisms (figure 2 [Droulez 88]).
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During an action, the brain uses two modalities in parallel. A pre-
dictive or projective one for selecting sporadicaly the state of some
sensorimotor sensors. And a reactive or concervative one for hold-
ing some variables in boxes defined by action intentions. The brain
would lost too much time in controlling every time all the sensors.

Fig. 2. The two Modalities of Movement Control by Brain

Let’s take an agent which behavior is specified by
an affordance-based FCM [Morineau 01]. Each affor-
dance belonging to this FCM is associated with a spe-
cific strategy of trajectory, described by a sequence
of sensorimotor configurations. An expert gives these
caracteristic sensorimotor configurations associated to
each affordance. If affordance selection is correct, then
the prototypic sequence of sensorimotor configurations
should be observed. The simulation of behavior in
imaginary space is synchronized with the real time be-
havior of the virtual actor. This synchronization fol-
lows neurophysiological experiments on hippocampus
in wich were observed oscillations permitting predic-
tion of trajectories [Buzsaki 92], [Lisman 95]. A low
frequency oscillation ask the context of the action to
the FCM. During one of this cycle, a high frequency os-
cillation synchronizes the prototypic sensorimotor con-
figurations with the real time observations by pattern
matching. This pattern matching between configura-
tions and observations is only done on the prototypes
associated with the affordance selected by the FCM.
The frequency ratio of these oscillations is equal or
greater than the number of configurations in this pro-
totypic sequence. The virtual agent then go through
the sequence of configurations discribing the contex-
tual strategy, always anticipating to reach the next
configuration. If the pattern matching fails on ev-
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ery configurations, then a new context is asked to the
FCM, inhibitting the current selected affordance and
memorizing sensorimotor features of the last low fre-
quency cycle. The agent will virtualy run in its imagi-
nary space these stored sensorimotor features for vari-
ous affordances. Then the agent chooses the one which
best fits this low frequence cycle sensorimotor features
according to the predicted prototypic sequence. This
choise permits an hebbian modification of the FCM
weigths, exciting the chosed affordance and inhibiting
the others.
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Simulation in the simulation: the active perception structure for
autonomous virtual actors. The FCM selects an affordance. Then
a strategy is starting, consisting in a sequence of postures character-
ized by sensorimotor configurations. The expected configurations
are compared to sensors, then synchronyze the HF sequence when
recognition occurs. If recognition fails, that puts in phase the LF
oscillation of the FCM and projets onto simulation mode the last
LF cycle having led to anticipation mistake. This recorded cycle is
played in a imaginary space, forcing affordances to choose the most
adapted one, then modifies FCM links by hebbian learning.

Fig. 3. Active Perception: a Key for Autonomous Learning

B. Virtual Believable Helmsman

Within the framework of the realization of a virtual
sailing ship intended for sporting drive, it is significant
to give believable behavior to virtual sailors. Such vir-
tual sailors have to be able to act, within a virtual
marine universe, as a helmsman could pilot, as a re-
glor could play on the veils and as a tactician could
choose strategies of navigation. The behavior of the
sailing ship must be qualitatively compatible with an-
ticipations of a real sailor. For that, it is necessary to
understand the affordances which a sailor uses to lo-
cate himselve on the waves and to choose a trajectory.
Indeed, the more the extraction of affordances is per-
tinent, the more believable will be the virtual sailing
ship thus prototyped. We have discribed a virtual be-
lievable helmsman using affordance-based FCMs and
active perception in [Parenthoën 02]. It uses virtual
sensors about sailing boat features and virtual effector
to steer the helm. But its behovior is prototypic and
we would like such a virtual sailor be able to adapt
it-self to different sorts of sailing boats, by imitating a
human helmsman.

We ask to the virtual helmsman to learn affordance
selection by modifying its affordance-based FCM of
the figure 1b. The FCM activation by fuzzyfication
of sensors determines affordance choise via FCM dy-
namics following a low frequency oscillation. The vir-
tual helmsman then uses this selected affordance to
adopt a suitable strategy. A strategy is specified by
both an expected sequence of postures caracterised by
some sensorimotor features and a parametrisation of a
reactive process associated to each posture. The reac-
tive process uses the equation (4) parametrized by a
5uplet, (µc, µt, µr, µδr, µδc) ∈ IR5 associated with each
no specific affordance. This formula results from phys-
ical study. It is based on the piloting description as a
compensation by the rudder blade effect of the various
couples unbalancing a sailing ship around the vertical
axis.

v2
boatθhelm =

∣∣∣∣
µc∆compass + µt∆trim+

µrθroll + µδrδθroll + µδcδθcompass
(4)

Reactive formula (4) identification is performed by
mean least square (MLS) on an affordance-based parti-
tion accorging to affordance selection. The navigation
strategy is chosed when the oscillation begins. If the
frequency is too low, the context could change before
the end of the oscillation. If this is not detected, the
behavior could be dramatic. If the frequency is too
high, calculus load increases and adaptations to each
new context will provoque a lack of believability: too
much energy consuming from a human point of view.
Furthermore, the highest is this frequency, the lowest
time remains for the learning process. Even if fre-
quency is low, the virtual helmsman should be able to
synchronize its low frequency oscillation with pertinent
perception of the environment. Each affordance is also
associated with a specific strategy of trajectory, de-
scribed by a sequence of sensorimotor configurations.
An expert gives these caracteristic sensorimotor con-
figurations. As an example, we detail such a sequence
of configurations (here 3 postures) associated with the
restart affordance:
1. Posture (θ1helm, ∆1compass, ∆1trim). Calculate only once
θ1helm using the reactive process (4) with restart coefficients and
(∆1compass = ∆compass − 5o, ∆1trim = ∆trim + 10o). Inibit the
reactive processus and observe compass trim and lodging varia-
tions: when θhelm = θ1helm, should be observed dh < 0, dc > 0
(else should have been selected jibe-luff affordance) and dr un-
der mean + standard deviation (else should have been selected
luff affordance).
2. Posture (∆2compass,trim = ∆1compass,trim, v2boat). Use un-
hibited reactive process (4) with ∆2compass,trim for calculating
θhelm dynamically. Observe only the speed vboat. It should in-
crease greater or equal to v2boat. If not increasing ask a new
low frequence oscillation affordance selection.
3. Final Posture (vboat ≥ v2boat): use then the usual unhibited
reactive process (4) with the restart coefficients and ask a new
low frequence oscillation affordance selection.

If the first configuration leads to mistake, then the



6

last low cycle of sensorimotor features is memorized
and the agent virtualy runs in its imaginary space this
cycle for various affordances and chooses the one with
lowest mistake for the first posture (characteristic of
strategy). This choise gives desired affordance values
in the FCM and permits link modification following
hebbian principle discribed in precious section. By this
way, our autonomous virtual actor learns how to man-
age affordance selection on this specific sailing boat.

IV. Conclusions and Futur Work

We use FCMs to control virtual entities behavior be-
cause FCMs contain explicit knowledge and can give
true perception and emotions. We have described a
FCM-learning algorithm included in an active percep-
tion process which gives autonomy for training period
choise. The implemented FCM-learning algorithm and
active perception give imitation ability in real time to
our virtual actors. This imitation is based on proto-
typic behaviors owned by the virtual entity and con-
stituing its fixed “culture”. This allows our actors to
imagine more accuratly the consequenses of their ac-
tions while cooperating with other entities, then to
choise suitable strategy of action. A part of meta-
knowledge used for learning depends on expert de-
scription during prototypic FCM elaboration and al-
lows imitation while preserving imitator’s personality
& emotions. Although, neither the prototypic fuzzifi-
cation of sensors, nor the prototypic defuzzyfications
onto effectors are modified. Further work will try to
find an autonomous process tuning these fuzzy trans-
formations. Furthermore, if virtual helmsman is be-
lievable in a virtual world, why not to make its steer
a real sailing boat.
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