Agent Metamodel for virtual reality applications

Ronan Querrec, Cédric Buche, Frédéric Lecorre, and Fabrice Harrouet

UEB/ENIB/CERV,
25 rue Claude Chappe
F-29490 Plouzané France {Querrec,Buche,Lecorre,Harrouet}@enib.fr

Abstract. The various existing agent models do not cover all the pos-
sible uses we consider for virtual reality applications. In this paper, we
present an agent metamodel (BEHAVE) based on an environment meta-
model (VEHA). This metamodel allows defining agents and organizing
teams of agents in a virtual environment. The use of this metamodel is
illustrated by the GASPAR application which simulates activities on an
aircraft carrier.

Keywords: agent, metamodel, virtual reality

1 Introduction

In the context of virtual reality, many applications are based on multi-agent
systems to simulate human activities or to simulate the environment reactions to
users’ actions. These applications use various agent models, multi-agent systems
and platforms such as JADE [14], JACK! or GAIA [16]. Several studies attempted
to generalize these models and propose agent or multi-agent system metamodels
[6,2]. Multi-agent systems are used to simulate human activities, physical or
biological systems; thus, it appears difficult to propose a metamodel to cover all
of these uses while keeping an effective language for the designer. Moreover, those
agent metamodels focus on the agent model but not its environment. However
in the case of virtual reality application the definition of the environment is an
important task that must interact with the modeling of agents. We distinguish
two major uses of multi-agent systems. First multi-agent systems to simulate
physical or biological phenomena like in [3] and second multi-agent systems to
simulate human activities. In this article we shall focus on the latter.

This kind of applications still takes a lot of time to be developped and remains
complex in its modelisation. Classical uses of these types of applications are
simulations, communication, training and teaching These types of applications
exhibit functionalities that can be developed independently from the specific
domain they are appled to. In the case of training applications for example,
pedagogical assistances as well as pedagogical agents’ behaviors can be defined
independently from the specific application domain. Our goal is to provide a
higher level of abstraction in the conception of virtual reality applications. As

! http://agent-software.com

a consequence, the model of a specific application becomes data for our generic
virtual reality metamodel (in the context of human activities simulation as we
have just said). Thus we provide a language which allows to a domain expert to
define the environment he adresses to, as well as the activities that are executed
in this environment. First of all, this description makes possible the automatic
execution of the simulation in a virtual reality application. In second hand it
can be considered as a knowledge base for the agents that execute the activities
in the environment.

We propose MASCARET, a metamodel to describe virtual environments and
the agents evolving in the environments. This metamodel provides a unified
modeling language to describe the structure of the environments (entities, posi-
tions...), as well as entities” and agents’ behavior. MASCARET is based on UML2.
This means that MASCARET is an extension of UML for virtual reality. tatic,
class) uml has already been used by agents’ metamodels to describe agents’ ac-
tivities [1], but the major contribution of MASCARET is the strong link between
environment design and agents’ activities design.

In this article we focus on the agent metamodel, but first (section 2), we
describe the principles, the workflow and the bases to create a MASCARET appli-
cation. In section 3, we present our proposition of agent’s metamodel for human
activities simulation in a virtual environment. As an example of MASCARET
use, the application GASPAR which simulates activities on an aircraft carrier is
presented in section 4.

2 The Mascaret metamodel

The aim of MASCARET is to provide a metamodel to describe the virtual en-
vironment (VE) by providing the semantics required for the artificial agents or
humans to be able to construct a representation of the environment and to act
together to reach their goals. MASCARET metamodel is based on UML, but UML
metamodel does not allow us to define the specific concepts of virtual reality. In
MASCARET, we propose to extend UML in order to represent these concepts.

Agents need to know which objects compose the virtual environment, how
to access them, their properties, their behavior and how to interact with them.
Three kinds of knowledge can be expressed using MASCARET:

— Domain concepts. It correspond to the semantic description of the concepts
relating to the concerned field of activity. Knowledge of the domain is ex-
pressed both at the model (concept) level (called M1), and at the level of
the occurrences of these concepts, called MO (tangible objects populating
the environment). In MASCARET as in UML, this knowledge is represented
by classes and instances (Class and InstanceSpecification on Figure 2).

— The possibility of structuring and interacting with the environment. In the
context of virtual environments, most of the tangible objects within these en-
vironments have a geometric representation, and are situated. These objects

2 http://www.omg.org

are entities and have the properties of the class they belong to as well as
geometric, topological and animations properties(EntiyClass and Entity
on figure 2).

— Entities’ behavior. The environment’s reactions to the user’s actions must
be simulated. The MASCARET entities have reactive behaviors (Behavior
on figure 2) which are triggered by events that can be caused either by the
user, by agents or by another entity. These behaviors are defined by UML
StateMachines. Entities behaviors and their executions represents also an
element of agent knowledge.

UML model

N

1) UML modeler

er /\ Mascaret plugins

Mascaret
plateform

hared) 3) opaque
i -
- library | pehaviours

Fig. 1. Process to develop applications using MASCARET

Every application designed with MASCARET follows the process illustrated in
Figure 1. First, the domain expert defines the virtual environment’s model (M1
model) in the form of UML-MASCARET diagrams exported into XMI. He has
to describe the structural models and behavioral models (state machines and
activities) and the human activities using UML collaboration and activities dia-
grams. This step is completed using a UML modeler which supports metamodels
defined as UML profiles.

Second, 3D designers have to construct geometrical objects (in Vrml format).
This means the construction of shapes and definition of geometries (informed
points, interaction surfaces and volumes) using classical 3D modeler. A MAs-
CARET plugin is added to 3D modeler in order to refer the UML model (XMI
file) and then add semantics to geometrical objects which are then defined as

instances of the domain model (M0 model) Many virtual environments can thus
be constructed based on the same M1 model.

Third, computer scientist has to code the possible opaque behaviors for spe-
cific non-introspectable behaviors. At the end, the user has to launch the simu-
lation platform : loading (M1) domain models and specific environments (MO),
and activating the interaction and immersion devices.

3 The agent metamodel

In the previous section, we have presented a specialisation of UML to describe the
virtual environment. Moreover, we use multi-agent systems to simulate human
activities. These activities are highly contextualized by the environment. Agents’
actions manipulate the environment and depend on the state of the environment.
It is therefore necessary to use the same language to describe activities as the
one used to describe the environment.

Several agent models or agent metamodels were proposed using UML. These
models either propose an extension of the UML metamodel [1] or automatically
interpret knowledge expressed in UML diagrams like activities or sequences dia-
grams [8, 15,4]. Furthermore, FIPA? offers models that claim to be a standard
for agent modeling.

Our goal is not to propose a new agent metamodel, but rather an implemen-
tation of existing concepts in the domain of virtual reality respecting the FIPA.
Nevertheless, the environment where the agents evolve and carry on their ac-
tivities is defined by using an extension of UML. Our implementation needs to
follow the "unified” idea of UML. This means that the end user (the domain
expert) wants to define agents and activities using the same language and the
same tools he used to define the environment. Respecting this idea also build
a strong link between the agents and their environment. Our implementation is
then to be consider as an extension of the UML metamodel in which we define
an operational semantic in the context of virtual reality.

Concepts involved in our implementation are: the agent, its actions or behav-
iors (section 3.1), its means of communication (section 3.2) and its organizations
(section 3.3). Figure 2 presents an overview of the proposed agent metamodel.

3.1 Agent and behavior

The agent model we propose is inspired by the FIPA standard and its imple-
mentation in JADE. We implement the proposed concepts by extending UML
in MASCARET. An agent performs behaviors and can communicate with other
agents through messages.

An agent is an instance and has a type AgentClass in the same manner as
entity and class. Thus, it is possible to describe the properties, statements and
actions of agents.

3 http://www.fipa.org

InstanceSpecificati0n|
£\
|AgentBehavior| | AgentClass | | EntityClass | | Entity | | Agent
i i

| InterfaceRealization

\—>| RoleClass || Ressource |
/

E;E%—{ RoleAssignement |
Y

%r
|Organisationa|8tructure|<—{ OrganisationalEntity | ACLMessage

Fig. 2. Overview of the agent metamodel.

Mailbox

This model is generic enougth to address the different kinds of fields. This
means that a specific domain model should not create a specific agent class by
deriving Agent from MASCARET. The specificities that should be obtained by
deriving Agent are actually formulated in our model by properties, operations
and specific behaviors (new instances of AgentClass).

Agents behavior are implemented like in JADE. An agent behavior call the
action() method while a condition is not met. To help designing a behavior,
JADE provides OneShotBehavior which is executed once and CyclicBehavior
looping forever. The agent then conducts a set of activities which are arranged
in sequence. The execution behavior (calling the action() method) is managed
by the scheduler proposed by MASCARET. The user then provides new behav-
iors by deriving OneShotBehavior or CyclicBehavior in order to overload the
action() method. The execution behavior is managed by the scheduler pro-
posed by MASCARET and this execution is also an explicit knowledge (start, and
result...) that can be used by agents.

3.2 Communication

Agents uses messages to communicate with each other. We implements the model
proposed by FIPA:ACL (Agent Communication Language?). A message is rep-
resented by a performative. The ACL model proposes 23 performatives. For
example, an agent uses the REQUEST performative to make a request to another
in order to obtain the value of a property or to make it execute an action. In
response, the INFORM performative allows an agent to give the value of a prop-
erty or to confirm the execution of the action. The messages are expressed in a
language and cover an onthology. Several languages exist for this purpose but
we use the one proposed by FIPA : FIPA-SL. Each agent has an automatic

4 Specification FIPA SC00061

communication behavior. This communication behavior is a CyclicBehavior
which reacts to every new incoming message. The purpose of this behavior is
to automatically analyze the message content according to the performatives.
For now, we only consider REQUEST and INFORM. In the language FIPA-SL
we manage everything that relates to the achievement of an action. Thus, it is
possible for an agent to request the execution of an action to another agent. For
example, the following message is received by agentl asking him to perform the
action openDoor.

ACLMessage : ((action (agentl (openDoor (door,right)))))‘

The communication behavior introspects the content of the AgentClass of
the receiver. If the requested action is found, the agent executes this operation.
If no operation is found, then the behavior looks for a procedure with that name
in the organizations in which the agent plays a role. If it exists, then the agent
triggers the execution of this procedure, using the necessary resources for this
procedure as parameters. If an action or a procedure shall be conducted on the
occurrence of this message, then the agent responds a AGREE performative to
the sender of the message. If no action and no procedure is found or is achievable
(depending on the state of the environment) then the agent responds with a NOT
UNDERSTOOD performative. This way of responding is normalized by the FIPA
standard.

3.3 Organisation

We focus on human activities which are often collaboratives. Then, the notion
of collaboration or organizational structure between participants are important.
The organization can be an a priori description or an a posteriori inference. It
can be defined by static rules or coming from agents’ behaviors. In our context,
the domain expert explicitly describes the structure of the organization.

Several organizational models exist [10,12,11,5], but in each of them the
concept of group, organization or collaboration as well as roles are significant.
In general, the organization aims at structuring the roles. A role may include
the description of the responsibility of the agent or a list of actions performed
by the agent. In [7] the role describes also the rights and duties of an agent.

As for the environment or for the agents, the organization can also be de-
scribed in terms of its structure and in terms of instances of this structure. The
organizational structure describes the roles that composes the organizational
entity as described when assigning roles to agents.

Finally, the description of these organizations by the domain expert can not
be independant upon the environment and agents. Since they are described in
UML, it appears necessary to describe these organizations in the same language.
Our approach is then to interpret the UML collaboration diagrams to instantiate
the elements of the organizational model we propose.

An organizational structure (OrganisationalStructure) describes how con-
crete organizations are instantiated. This is the same approach as the principle

of COLLABORATION in UML. In MASCARET, a role is a set of action. We rep-
resent this principle with the concept of RoleClass. A RoleClass is a kind of
Interface (with the same meaning as in UML). As seen before, an AgentClass
describes the agent structure, its statements and its possible actions. It uses
also an InterfaceRealization to implements a RoleClass (inheriting from
Interface). This is substantially the same principle as in UML. This helps pro-
vide a rich mechanism on how a service interface is realized. For example an
action of the interface can be achieved in an AgentClass by a complex arrange-
ment of actions. This also allows us to describe all the actions an agent has to
do without describing how they are actually executed. Organizations and roles
may have the responsibility for resources (Ressource). This represent a first
link between agents behaviors and the environment in which the organization
operates. The concept of resource can be described independently of concrete
objects. A resource is defined by its name and the entity class that can play the
role of this resource.

An organizational entity (OrganisationEntity) is an instance of an orga-
nizational structure. This is the same approach as the principle of COLLABO-
RATIONUSE in UML. It assigns roles to agents (RoleAssigment) and resources
to entities (ResourceAssignement). There are several organizational entities for
the same organizational structure. Roles and resources can be set a priori but
could also be dynamic.

4 Virtual reality application

GASPAR is a virtual reality application developed to simulate human activities
on an aircraft carrier. In GASPAR, a typical scene, such as the one shown in figure
3, is composed of about 1,000 entities, each with a 3D representation (VRML),
i.e. a total of 1 million polygons. In this scene, about 50 agents evolve, divided
into 10 teams, each with an average of 5 roles. Each of these teams is responsible
for an average of 5 procedures. The most complex procedure activates 9 roles and
organizes 45 actions. In this scene, at each moment, around 50 agents behaviors
are activated. It is implemented using AReVi® and runs in real-time (around 40
frames per second) on a desktop computer with 2GB of RAM, a 64 bit processor
running at 1.3 GHz, and a GeForce GPU with 1GB of video memory.

This application uses the generic models presented in the previous section, i.e.
the structure of the environment, objects, organizations and procedures present
in the application are described by a UML model. Figure 4 represents the global
architecture of the model used in GASPAR.

In this figure, we can see that the model is divided into three packages: the
Environment package, the Agent package and the Organizations package.

— The Environment package describes all the kinds of objects (classes) that
compose the environment. Links between classes are also represented as we
can see on figure 4.

® http://svn.cerv.fr/trac/AReVi/

Fig. 3. The GASPAR application.

— The Agent package represents the different types of roles that an agent will
take. Those roles correspond to the those which are defined in the real pro-
cedures of catapult-launching or landing for example. A role is made up
with several methods which represent operations that the agents are able
to execute. An agent can be unable to execute some actions that another
agent is responsible for (notion of competence). That is why “Staff” class
is derived in several subclasses, representing specialities of different types of
staff members on the aircraft carrier for example.

— The Organizations package describes the different teams on the aircraft car-
rier, the roles that compose those teams, and the procedures that those
teams can execute. Roles that take part in those procedures correspond to
the types of agents defined in the Agent package. Figure 4 shows the activity
diagram representing the lift-off procedure of an helicopter from the aircraft
carrier. Two agents are involved in this procedure: the pilot of the helicopter
and an agent which is of type PEH, playing the role of ChefPEH.

The French navy (DCNS) provides scenarios, pre-calculed by a scheduling
and resources management tool. The GASPAR application makes possible to
replay those scenarios in order to estimate the compatibility of the functional
requirements and the geometry of the ship.

5 Conclusion and futurs works

In this paper, we presented an agent metamodel (BEHAVE) based on an environ-
ment metamodel (MASCARET). The metamodel allows the integration and the
management of complex teams of agents in an interactive virtual environment.
We saw the metamodel use in the GASPAR application which simulates activities
on an aircraft carrier.

The FIPA standard proposes to provide a knowledge base to the agent, but
without giving a formalism for the knowledge base. As a perspective of our work
we propose that the agent knowledge base could be a subset of the environment.
Thus it would be possible to drive communication to read or write in this knowl-
edge base according to the FIPA-SL messages received. A behavior specifically

1 PedroPilot : Pilot ChiefPEH:PEH

Deflector CatapultSet
= deflector —0
+startPosition : real +lastCatapult : real _ N\
+open0) +timeLap : real P -
+olose) (HelicoLiftoffPreparation)) (GolnFrontOfHelico())
i /\
rail ‘ cabin 1 (mﬁm
Rail CatapultCabin ~
+lenght: real +speed: real T
+FangPos: real +hight: real — |

+HoldBackPos : real -
+up() (HelicaLiftoff())

S
+down() e
- (ReturnTolnitialPosition())
PedroMission()) /
1y fang /
Fang
+speed: real /
StationaryFlight()) /

+returnPos()

+forward() —
+tension() \\-é

Fig. 4. UML model describing the GASPAR application

developed for the application will then only manipulate this knowledge base.
Several problems remain, however. How to determine the information the agent
has at the beginning of simulation? Could all behaviors really be expressed in

th

ese terms? How to synchronize the modified knowledge base and the reaction

behavior concerned?

References

1

. B. Bauer, J. Muller, and J. Odell. Agent uml: A formalism for specifying multiagent
software systems. In Agent-Oriented Sofware Engineering, volume 1957 of Lecture
Notes in Computer Science, pages 109-120. Springer Berlin / Heidelberg, 2001.

. G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. Gomez-Sanz,

J. Pavon, and C. Gonzales-Perez. Faml : A generic metamodel for mas devel-

opment. [EEE Transactions on Software Engineering, 35(6):841-863, 2009.

G. Desmeulles, S. Bonneaud, P. Redou, V. Rodin, and J. Tisseau. In virtuo exper-

iments based on the multi-interaction system framework: the réiscop meta-model.

CMES, Computer Modeling in Engineering and Sciences, Oct. 2009.

L. Ehrler and S. Cranefield. Executing agent uml diagrams. In Autonomous Agent

and Multi-Agent System 2004, pages 906-913, New York, USA, july 2004.

J. Ferber and O. Gutknecht. Operational semantics of multi-agent organizations.

In N. Jennings and Y. Lespérance, editors, Intelligent Agents VI. Agent Theories

Architectures, and Languages, volume 1757 of Lecture Notes in Computer Science,

pages 205-217. Springer Berlin / Heidelberg, 2000.

C. Hahn, C. Madrigal-Mora, and K. Fisher. A plateform-independent metamodel

for multiagent systems. Autonomous Agent and Multi-Agent System, 18(2):239—

266, 2009.

J. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisa-

tions with organisational artifacts and agents. Autonomous Agent and Multi-Agent

System, 20(3):369-400, 2010.

10.

11.

12.

13.

14.

15.

16.

M.-P. Huget and J. Odell. Representing agent interaction protocols with agent
uml. In Autonomous Agent and Multi-Agent System 2004, pages 1244-1245, New
York, USA, july 2004.

M. Kallmann and D. Thalmann. Modeling objects for interaction tasks. In Pro-
ceedings of Computer Animation and Simulation’98, pages 73-86, 1998.

L. Montealegre Vazquez and F. Lopez y Lopez. An agent-based model for hier-
archical organizations. In P. Noriega, J. Vazquez-Salceda, G. Boella, O. Boissier,
V. Dignum, N. Fornara, and E. Matson, editors, Coordination, Organizations, In-
stitutions, and Norms in Agent Systems II, volume 4386 of Lecture Notes in Com-
puter Science, pages 194-211. Springer Berlin / Heidelberg, 2007.

A. Omicini and A. Ricci. Mas organization within a coordination infrastructure:
Experiments in tucson. In A. Omicini, P. Petta, and J. Pitt, editors, Engineering
Societies in the Agents World, volume 3071 of Lecture Notes in Computer Science,
pages 520-520. Springer Berlin / Heidelberg, 2004.

H. V. D. Parunak and J. Odell. Representing social structures in UML. In M. J.
Wooldridge, G. Weiss, and P. Ciancarini, editors, Agent Oriented Software Engi-
neering Workshop (AOSE 2001), International Conference on Autonomous Agents,
volume 2222 of Lecture Notes in Computer Science, pages 1-16. Springer—Verlag
(Berlin), 2002.

P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology language
semantics and abstract syntax. W3C Recommandation REC-owl-semantics-
20040210, W3C, 2004.

G. Rimassa. Runtime Support for Distributed Multi-Agent Systems. PhD thesis,
University of Parma, 2003.

V. Torres DaSilva, R. Choren, and C. J.P. De Lucena. A uml based approach
for modeling and implementing multi-agent systems. In Autonomous Agent and
Multi-Agent System 2004, pages 914-921, New York, USA, july 2004.

M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agent and Multi-Agent System,
3(3):285-312, 2000.

