Generic Model for Experimenting and Using a Family of
Classifiers Systems:
Description and Basic Applications

Cédric Buche and Pierre De Loor

UEB /ENIB / LISyC
European center for virtual reality
Technopdle Brest-Iroise F-29280 Plouzané, France
[buche,deloor]@enib.fr

Abstract. Classifiers systems are tools adapted to learn interactions between
autonomous agents and their environments. However, there are many kinds of
classifiers systems which differ in subtle technical ways. This article presents a
generic model (called GEMEAU) that is common to the major kinds of classi-
fiers systems. GEMEAU was developed for different simple applications which
are also described.

1 Introduction

Defining the behavior of autonomous artificial entities is faced with the problem of
selecting a model able to account for the link between perceptions and actions in an ef-
ficient manner. There are a great number of proposed solutions to this issue. However,
they require detailed descriptions which are difficult to achieve, either because they
require a definition based on a priori rules and symbols [2, 8], or because they are sub-
ject to configuration difficulties and behavioral indeterminism [1, 7]. Another solution
would be to define the entities’ initial approximate behavior, which would then adapt
according to its environment. This solution is implemented by classifiers systems. It
uses a set of competing rules and incorporates learning processes by choosing and im-
proving these rules. A great deal of literature exists on the subject [3,12,6,13,11]. A
number of authors have put forward different variations of the approach, each offer-
ing different mechanisms adapted to specific problems. Our objective is to be able to
test and advance these mechanisms without difficulty, consequently we are interested
in designing and implementing a generic model.

This article is organized as following: first we present the general mechanisms of
classifiers system. We then go on to present a generic model, called GEMEAU', which
integrates these mechanisms, and with which we can easily test different versions. Next
we explain how we applied this model to different types of applications: multiplexers
and woods environments.

! GEMEAU: GEneric Model for Experimenting And Using a family of classifiers systems.

2 Classifiers Systems

2.1 Principles

A classifiers system is an adaptive system that learns to perform the best action given its
input. The system manage a combination of “condition-action” rules called classifiers,
pondered by quality parameters. The system perceives its environment (usually a vector
of numerical values), deduces the applicable rules, carries out an action as a result of
these rules. Technically, when a particular input occurs, classifiers whose conditions are
satisfied by that input are selected and the system chooses one of the possible actions
(from selected rules) according to the quality parameters. The system is able to receive
a reward from the environment which it then uses to modify the rules or their quality
parameters.

Through experimentation, classifiers system can therefore be used to learn the as-
sociation between conditions and actions, thus maximizing credit intake. In order to
avoid a combinatorial explosion of the quantity of rules, they are generalized; they ap-
ply to different perceptions of the environment. Mechanisms which allow the creation,
enrichment (specialization/generalization), or destruction of these rules must therefore
be used. Evolutionary algorithms are often used to do this, even though other heuristic
approaches are available. The qualities of the rules are modified dynamically through
reinforcement learning, and the rules themselves are modified by genetic algorithms.

2.2 Formalization

In this section we propose the incremental and generic formalization of classifiers sys-
tems, and gradually introduce learning mechanisms.

The global structure of a classifier system, is a 7-uplet
(Ii, [P], [M], [A],Matching, Selection, Io):

— I1i is the interface input due to which each Perception within the environment
corresponds to a binary code.

— [P1, (population), is the set of the system’s classifiers, coded by a succession of n
bits?. The generalizing representations contain # symbols which correspond to an
indeterminate value. A rule is a (C, A) pair with C U A € {0, 1, #}™ where :

e (' : the condition for application of the rule.

e A : the action(s) associated with the application of the rule.
Let us take the example of a robot with four "all-or-nothing’ sensors and one action.
The input interface converts the state of the sensors into a binary value and the
output interface triggers the action depending on the action’s bit value. Thus, a
{011#, 1} rule means that the rule is applicable if the first sensor is inactive and
the two following sensors active. The state of the fourth sensor has no influence,
and applying the rule triggers the action.

— [M] C [P] is the set of classifiers of which the condition element pairs with the
perceived environmental information during a selection cycle. This is known as
Match-set.

% Even if certain systems work with other alphabets [9, 17, 5].

[A] C [M] is the set of classifiers representing the selected action. This is known

as Action-set.

— Matching is the mechanism which makes the transition from [P] to [M] possi-
ble. This is generally achieved using a matching rule between C' and the informa-
tion derived from Ii. This rule is able to interpret the generalization symbols that
make up the classifier conditions.

— Selection is the mechanism which makes the transition from [M] to [A] pos-
sible. Depending on the details of the different versions of classifiers systems, it is
able to determine the desired action.

— To is the output interface through which the activated Action corresponds to a

binary code.

Learning occurs due to an evaluation of the quality of the rules represented by
one or a number of additional parameters. The definition of a classifier is thus ex-
tended to a R = (C, A, f) triplet where f characterizes its quality. Learning devel-
oped by Rewarding the rules, by altering their quality using reinforcement learning
algorithms and by Generating rules using evolutionary and heuristic covering al-
gorithms. The dynamics of learning classifiers systems are therefore based on the fol-
lowing cycle: Perception/Matching/ Generation (covering)/ Selection
/Action/Reward/ Generation (evolutionary algorithm).

Selection is guided by the quality of the rules, which are grouped together
depending on their [A] element. Often, a *wheel of fortune’ mechanism? is applied,
which means that each package has a probability proportional to its capacity to be se-
lected. The credit assignment (Reward) mechanism distributes credit to the rules that
have contributed to its acquisition. It increases the quality of the rules triggered prior
to the acquisition of the credit and decreases that of the others. Its definition affects the
relevant length of a series of actions: i.e. the number of rules in a sequence considered
necessary in order to achieve a certain goal. The generation mechanism must both
minimize the number of rules and conserve those which assist in achieving credit. A
good rule is therefore a high-quality generalizing rule (relative to the others). The two
generation (rules discovery) mechanisms used are covering (creation of rules when no
classifiers match the perception of the environment) and evolutionary algorithms.

3 GEMEAU

Classical classifiers systems (ZCS, XCS, ACS, Hierachichal ...) [15, 16, 12,4] go some
way to finding optimal solutions in Markovian or non-Markovian environments. Never-
theless, as Sanza notes [10], the improvements and supplementary systems are suitable
only for specific cases and none of the models are able to supply an overall solution
for all of the problems (XCS is only effective if the credits are discrete and of a fixed
quantity; ACS is only useful if each action leads to a modification in the perception of
the world ...).

3 The wheel of fortune mechanism consists of picking elements randomly, so that their proba-
bility of being chosen is proportional to their selectivity.

There are, therefore, a great number of classifiers systems [14]. Developing and test-
ing a variety of such systems take time and is not easy. Using the structure and dynamics
analysis conducted previously we were able to come up with a generic background for
a whole family of classifiers systems. Our architecture claims to be generic, in the sense
that it can be used to implement ZCS and XCS systems (ZCS, XCS, ZCSM, XCSM).

3.1 Architecture

The architecture is displayed in Fig. 1 as a UML classes diagram. The system is called
GEMEAU. It is based around two components: interface with the environment and sys-
tem.

The interface with the environment determines the interactions between the system
and environment, both of which are common to different classifiers systems . In our
model, the different interfaces are implemented using three categories: CS_II, CS_10
and CS_R (respectively entry interface, output interface and credit). Communication be-
tween the interfaces and the environment takes place in the form of messages, enabling
the classifiers system to have an implementation in parallel to the environment.

The System defines the elements and the mechanisms of our classifiers system in
concrete terms. Let us consider the following elements:

— A classifier (CS_Classifier) is made up of several parts: condition (CS_Condition),
action (CS_Action) and configuration (CS_Parameter);
— Thesets [P],[M],[A] and [A] _; are lists of CS_ClassifierList-type classifiers.

We put forward the following mechanisms:

— The Mat ching mechanism, with which the classifiers that match the information
coming from the environment can be extracted. It is included in the CS_ClassifierList
by the match() method;

— The Generation mechanism by covering, which creates rules according to the
content of [M] after Matching. It is included in the CS_ClassifierList by the
cover() method which can be configured (notably for the number of #);

— The general (CS_System) method represents the workings of a given cycle (step()
method);

— The Selection mechanisms of the winning (CS_SelectorAlgo) actions (which
must be able to differ according to the desired learning);

— The Reward mechanism, (CS_.AOCAIgo), modifying the classifiers’ configuration.

— The Generation genetic algoritm, (CS_GeneticAlgo), where different operators
must be specified, i.e. crossing or mutation.

cs_ll Cs_Io CS_R

“per ception() +action() "+ enf or cement ()

7 1 T

CS_System
+get Previ ousA()
. +get P()
+get M)
CS_SelectorAlgo +get A()
+step()
+sel ect (M Cs_Ol assifierList, out A CS_OlassifierList) +run() 1
A 1 CS_AOCAIgo
CS_GeneticAlgo
ENERIC +updat e()
G : A
1.3 —
CS_ClassifierList
Fmat ch(in c: CS_Condi tion, out M CS_cl assifierList)
+cover (in c:CS_Condition): bool ean
CS_Classifier

+match(): bool ean

1 1 1

CS_Condition || CS_Action CS_Parameter

zcs T
ZCS_RouletteWheel | ZCS_Classifier | | ZCS_Power | ZCS_BucketBrigad
Fselect (M CS_O assifierList, out A CS OassifierList) +updat e()
Fig. 1. UML diagram of GEMEAU augmented by a ZCS using inheritance.
3.2 Use

GEMEAU can be specialized in order to obtain a ZCS (Fig. 1). Through inheritance,
we can define:

— The Rules (ZCS_Classifier derived from CS_Classifier) having a configuration
force (ZCS_Power derived from CS_Parameter);

— The *wheel of fortune’ type Selection mechanism ZCS_RouletteWheel de-
rived from CS_SelectorAlgo);

— The Bucket Brigade-type Reward mechanism (ZCS_BucketBrigad derived from
CS_AOCAlgo);

— The Generation genetic algorithm (ZCS_GeneticAlgo derived from
ZCS_GeneticAlgo) notably specifying that the selective value is the rule’s strength.

The rest of the system uses the pre-existing default mechanisms such as covering. We
implemented the XCS classifier system using the same techniques. In order to do so,
we must overdefine CS_Parameter.

We can also easily add memory to ZCS in order to obtain a ZCSM [3]. In that case,
we must increase the result of perception using an internal classifier system register
which is modified by part of the last action to have been carried out. Using GEMEAU,

the step() method can be redefined simply by inheriting from the CS_System. We imple-
mented the XCSM classifier system using these same principles.

By using these specialization and extension mechanisms we were able to use our ar-
chitecture to implement and test ZCS and XCS family classifiers systems (ZCS, ZCSM,
XCS, XCSM). Our perspectives are based on the implementation of supplementary tra-
ditional anticipatory or hierarchical systems (ACS: anticipation [12] and ALECSYS:
hierarchy [4]). Implementing these systems could well be less simple that for the fam-
ily of ZCS and XCS, and the architecture may need to be modified.

3.3 Validation

One simple and frequently used evaluation environment is a multiplexer. Let us consider
a multiplexer with an input of 6 bits ag, a1, do, d1, d2, d3 and an output of one bit. ag
and a; correspond to address bits. The multiplexer equation is output = ag.a;.dg +
agp-aq .d1 + ag chdQ + ag.aq dd The output will be either the value of d(), dl, d2 or d3,
depending on the address. The aim is to find this multiplexing function.

Using GEMEAU, we must simply determine the detectors and effectors that inter-
face with the environment plus the reinforcement to be distributed, and then instantiate
a CS_System (Fig. 2). The conditions and actions of the classifiers here correspond to
the multiplexer’s input and output respectively. The classifier system is rewarded when
the rule selected corresponds to the multiplexing function.

/* Environnement */
env = new EnvironmentMultiplexer (nbEntries,nbOut);
detector = new CS_II_Boolean (env);
effector = new CS_IO_-Boolean (env);
reinforcement = new CS.R(env);

/* System */
system = new CS_System();
system->setDetector (detector) ;
system—->setEffector (effector);
system->setReinforcement (reinforcement) ;
system->run () ;

Fig. 2. Use of GEMEAU for a multiplexer-type environment.

Another advantageous evaluation environment is the woods environment. It corre-
sponds to a graphical representation based on an infinitely repeating pattern. It repre-
sents a forest and the aim of a situated agent is to find food. Within this forest there are
insurmountable obstacles (trees) and areas of unrestricted movement. The perception
of the agent corresponds to a representation of the 8 squares surrounding the occupied
position. The simplest of these environments is woods! (Fig. 3a). This is a deterministic
Markovian environment* The woods100 (Fig. 3b), however, is non-Markovian. Indeed
the optimum displacement from square number 2 is to the right although for square
number 5 it is to the left even though these two squares are perceived identically.

* There are no perceptions values corresponding to different states of the agent

y @

Fig. 3. Markovian woods1 (a) and non-Markovian woods100 (b) environments.

The system learns by alternating between an iteration in exploration mode (selecting
the action using the *wheel of fortune’ mechanism) and an iteration in exploitation mode
(choosing the best action). The curves only take into account the results in exploitation
mode, dealing with the average of the last ten iterations.

GEMEAU can deal with this two classical examples, it converges for the multi-
plexer (Fig. 4a) and for woodsl (Fig. 4b). For the multiplexer, we achieve a 100%
success rate. For woodsl, we achieve solutions similar to the minimum number of
movements. The results are conclusive: in both cases we reported performances sim-
ilar to those described in the results of [15]. Furthermore GEMEAU allows the rapid
evaluation of derived classifier systems. We compared the ZCS and ZCSM results in
the woods100 non-Markovian environment (Fig. 4c). Our results rediscover the ZCS’
difficulties obtaining optimal rules in non-Markovian environments. They also confirm
that our architecture can be used to extend the capacities of ZCS to non-Markovian
environments.

Vst 7CS
Optimal
I
: :
g =)
E | g \ W\‘w
07l e At
0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Learning iteration (a) Learning iteration (b)

60
50
40
30 [

Performance

20
10

0

0 1000 2000 2500
Leseningtecation (©

Fig. 4. ZCS multiplexer learning (a) and in woods1 (b). As of a sufficient number of iterations,
our system conducts the multiplexing function and obtains the minimum number of movements
in the case of woods1. ZCS and ZCSM learning in woods100 (c).

4 Conclusion

Having described existing classifiers systems, we illustrated a more general classi-
fiers system which groups together the traditional systems. We put forward our model
called GEMEAU enabling traditional systems and their variants to be both modelled
and extended. This implementation is flexible enough to be used for a variety of prob-
lems as it proposes an interface between the environment and the classifier system (in-
put/output/reinforcement). It has been used to test many types of classifiers systems and
different conceptual hypotheses quickly, as well as to obtain significant comparative re-
sults. Among other things, these tests showed us the interest of being able to access a
library of classifiers systems with which we should be able to define a methodology for
choosing learning algorithms based on certain stages of the tests.

References

1. Brooks, R.: Elephants don’t play chess. Robotics and Autonomous Systems 6(1&2), 3—15
(1990)

2. Carver, M., Lesser, V.: The evolution of blackboard control architectures. Tech. Rep. UM-
CS-1992-071, Department of Computer Science, University Massachusetts (1992)

3. Cliff, D., Ross, S.: Adding Temporary Memory to ZCS. Tech. Rep. CSRP347, School of
Cognitive and Computing Sciences, University of Sussex (1995)

4. Dorigo, M.: Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed
Classifier Systems. Machine Learning 19, 209-240 (1995)

5. Heguy, O., Sanza, C., Berro, A., Duthen, Y.: GXCS: A generic classifier system and its
application in a real time cooperative behavior simulations. In: International Symposium
and School on Advanced Distribued System (2002)

6. Lanzi, P, Wilson, S.: Optimal classifier system performance in non-Markov environments.
Tech. Rep. 99.36 (1999)

7. Maes, P.: The dynamics of action selection. In: Proceedings of the international Joint Con-
ference on Artificial Intelligence (1989)

8. Mateas, M.: An Oz-centric review of interactive drama and believable agents. Lecture Notes
in Computer Science 1600, 297-343 (1999)

9. Matteucci, M.: Fuzzy learning classifier system: Issues and architecture. Tech. Rep. 99.71
(1999)

10. Sanza, C., Heguy, O., Duthen, Y.: Evolution and cooperation of virtual entities with classifier
systems. In: Eurographic Workshop on Computer Animation and Simulation (2001)

11. Sigaud, O., Wilson, W.: Learning classifier systems: A survey. Journal of Soft Computing
11(11), 1065-1078 (2007)

12. Stolzmann, W.: Anticipatory classifier systems. In: Third Annual Genetic Programming Con-
ference. pp. 658—-664. Morgan Kaufmann (1998)

13. Tomlinson, A., Bull, L.: A zeroth level corporate classifier system. In: Second International
Workshop on Learning Classifier Systems. Springer (1999)

14. Urbanowicz, R., Moore, J.: Learning classifier systems: A complete introduction, review,
and roadmap. Journal of Artificial Evolution and Applications p. 25 (2009)

15. Wilson, W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1-18
(1994)

16. Wilson, W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149-175
(1995)

17. Wilson, W.: Get real! XCS with continuous-valued inputs. LNCS 1813, 209-219 (2000)

