
Submitted to Game-On’02, London, United Kingdom, November 29-30, 2002.

LEARNING BY IMITATION OF BEHAVIORS FOR
AUTONOMOUS AGENTS

Cédric Buche Marc Parenthoën Jacques Tisseau

Laboratoire d’Informatique Industrielle, ENIB

EA 2215 / Université de Bretagne Occidentale

Parvis Blaise Pascal, BP 30815, F-29608 Brest Cedex,

France

E-mail:{buche,parenthoen,tisseau}@enib.fr

KEYWORDS
Learning of behaviors, Animat, Autonomy, Imitation.

ABSTRACT

The goal of this work is to provide more autonomy for virtual
actors by endowing them with a learning ability by imitation.
While acting in his virtual world, our virtual actor uses
prototypic behaviors defined by Fuzzy Cognitive Maps (FCMs)
to simulate other actors’ behavior in his imaginary world. This
simulation allows him to carry out predictions and choices
of strategies. We propose a method allowing virtual actor to
adapt a prototypic behavior of FCMs to a model by simple
observation. Prototype adapts itself to its model and simulation
of other actors’ behavior in the imaginary world comes closer
to reality. This method uses meta-knowledge about learning
allowing to preserve a "personality" and emotions.

INTRODUCTION

Our study takes place in the framework of Interac-
tive Fictions where autonomous entities improvise with
avatars [Hayes-Roth 96]. The idea is to provide the abil-
ity for virtual actors to adapt his representation of other
actors’ behavior, and therefore to carry out accurate pre-
dictions by simulating.

EachAnimat[Meyer 91] has its own behavioral culture
implemented in a library of behavioral prototypes. This
culture gives it self-perception and perception of others.
While reacting in virtual world, it can simulates in its
imaginary world its vision of other entities in order to
choose a strategy according to the prediction of the sim-
ulation [Maffre 01]. We propose to endow theseAnimats
with learning by imitation [Mataric 01]. By observing an-
other entity or avatar, ourAnimatmodifies one behavioral
prototype from its library in order to imitate the observed
model with more accuracy, increasing the relevance of its
predictions. It can also imitate another agent preserving
its own “personality”.

Fuzzy Cognitive Map (FCM) [Kosko 86] can specify
and control emotional and perceptive (not only sensitive)

Animatsbehavior [Parenthoën 01]. FCM is declarative
and explanatory, it can therefore be specified by a non-
specialist in computer science.Animatsbehavioral cul-
ture consists in a library of prototypic FCMs allowing it
to simulate and to anticipate agents’ behavior in its imag-
inary world. We propose to adapt prototypic FCM by
learning process in order to imitate an observed behavior.

Applications are implemented in the multi-agent en-
vironmentoRis[Harrouet 02] showing a sheepdog gath-
ering sheep. The learning mechanism allows the dog to
adapt its prey prototype to a given sheep in real time.

Next section explicits the context in which our learning
algorithm is situated . We will justify the choice of the
FCMs as foundation of the behavioral library, explain the
notion of imaginary world and explain how we envisage
the learning mechanism. Next, we will present the
learning algorithm. Finally, we will apply this algorithm
on the example of the sheepdog and explicit the obtained
results.

CONTEXT

FCMs are graphs of influences allowing to specify and
to control anAnimatbehavior. FCM is a dynamic system
constituted by nodes and links. Nodes represent concepts
and links causal connexions between concepts. Every
concept has semantics. Information relating to the per-
ception of anAnimatare fuzzyfied to activate sensor con-
cepts, while activations of motor concepts are defuzzy-
fied to determine its effectors. FCM is not only sensory
but also perceptive thanks to self-excitator links and to
links from internal to perceptive concepts.

We consider that anAnimathas sensors allowing it to
perceive its environment, effectors to perform, and also
a library of prototypic behaviors specified by FCMs. A
FCM is not only declarative, it is an explanatory graph
fitting to behavior specification. Thus, an expert in col-
laboration with an ergonome will be able to develop a li-
brary of prototypic behaviors. This library represents the
behavioral culture of theAnimat. For example the library



of an animal can be constituted of a prototypic behavior
of prey, and a prototypic behavior of predator.

In parallel to the virtual world, anAnimathas also an
imaginary world, where it can simulate its own behav-
ior and also other actors’ behavior. This imaginary world
corresponds to an approximate representation of the envi-
ronment fromAnimatperception and to a representation
of other actors’ behavior. In Fact, anAnimat uses pro-
totypic behaviors in order to simulate other actors’ be-
havior. It imagines its behavior in simulating its own de-
cisonal mechanism and imagines other actors’ behavior
with prototypic FCMs. It can use its imaginary world to
choose a strategy between several possibilities, not by a
logical reasoning but by a behavioral simulation. Thus, it
will be able to make predictions on the future.

We want to provide the ability for anAnimat to
adapt its representation of other actors’ behavior and
consequently its predictions become more pertinent.
Thus, we propose to endow anAnimat with a learning
ability by imitation. AnAnimatmust be able to modify
a behavior to mime an observed behavior of a model
that could be another actor or an avatar controlled by a
human operator [Stoffregen 99]. By simple observation
of the imitated model, the virtual actor must adapt its
representation of the model behavior. The mechanism
used to control the model behavior to imitate is indepen-
dent of learning. Thus, imitated model can be piloted
by any decision-making mechanism. The idea here is
to modify prototypic FCMs representing other actors’
behavior in comparing the result of the simulation in the
imaginary world and the result of the virtual world. Thus
we incorporate a third level to anAnimat that we name
“adaptative mode” (learning), adding to the reactive
mode (virtual world) and to the “predictive mode”
(imaginary world). These three modes represent the
three levels used in cognitive psychology [Morineau 02].
The three methods are in communication, but they evolve
in parallel.

LEARNING THROUGH IMITATION

In this section, we present a method allowing an adap-
tation of prototypic behavior by imitation in real time. An
Animat observes its environment (other agents), allow-
ing it to simulate other entities’ behavior in its imaginary
world with prototypic FCMs. The idea is to provide a
more pertinent simulation by adapting prototypic FCMs
by imitation. The modification of prototypic FCMs re-
duces the difference between predictions of the imaginary
world and reality. We made the asumption that anAnimat
has sensors to estimate the information relating to proto-
typic FCMs, means an estimation of sensors and effector
values that will allow to fuzzyfy sensors values and to
compare the result of defuzzyfication of motor concepts
activations with the effector values of the model.

The learning mechanism consists in getting back the
result of the simulation in the imaginary world, compar-
ing it to what happened in the virtual world, and deduct-

ing an adaptation of prototypic FCMs. We will limit our
study to the learning of the weights of the causal connec-
tions between concepts in a prototypic FCM in order to
imitate a given behavior, by modifying neither the struc-
ture of the influence graph of a FCM, nor the fuzzyfi-
cation of the sensors, nor the defuzzyfication of the con-
cepts motors. This modification of the causal connections
between concepts uses meta-knowledge about learning
(the expert certifies notably structures of FCMs and the
sign of links).

Kosko has proposed two different Hebb type meth-
ods [Hebb 49] for an expert given limit cycle learning
by FCM [Kosko 88]. One is based on the correlations
between activations [Kosko 92], the other on a corre-
lation of their variations (differential hebbian learning)
[Dickerson 94]. The differential learning modifies only
the associated links to correlated variations of the con-
cepts activations, while the non differential correlations
learning risk to modify in a non pertinent way all links.
Kosko’s differential learning is based on the knowledge
of a limit cycle including all concepts and provided by an
expert. However, we can’t have such a limit cycle, be-
cause only estimated model sensors and effectors can be
observed and FCM having generated them is not avail-
able. In addition, Kosko’s differential learning makes the
assumption that external activations are constant. How-
ever, the virtual world is a dynamic system and external
activations evolve in time. Thus, we will modify Kosko’s
hebbien differential learning to our case.

The algorithm of adaptation that we propose is an iter-
ative cycle in four stages:

1. Model estimation:
by simple observation theAnimatestimates model-
sensors and model-effectors,

2. Simulation of the prototypic behavior:
sensors are fuzzyfied into perceptive concept exter-
nal activations, calculation of the FCM dynamics,
then image-effectors are obtained by motor concept
inner activation defuzzyfication,

3. Calculation of calling into question:
comparison between image-effectors and model-
effectors is performed, generatation of a set of de-
sired pseudo-activations obtained by going up the
influence graph from motor concepts towards per-
ceptive concepts without modifying links and by us-
ing meta-knowledge about learning,

4. Update causal links:
FCM causal links are updated by applying discrete
differential hebbian learning to the sequence corre-
sponding to the passage from FCM activations to-
wards desired pseudo-activations.

More precisely :

1. In the first stage, imitator measures features about
the model, which are necessary for model-sensor
and model-effector estimations.



2. The second stage corresponds simply to the usual
use of a FCM for the control of a virtual actor, and
determines image-actor FCM activations at moment
t + δt ≈ t in the imaginary world, according to
model-sensor estimation and FCM dynamics with
N iterations:

a(t+ I
N δt) = S

(
G(f(t), LT · a(t+ I−1

N δt))
)

for I = 1, · · · , N ; δt << 1 (1)

N equals the length of the longest acyclic path
added to the length of the longest cycle in the influ-
ence graph, in order to make sure that sensor infor-
mation is spread to all nodes;n being FCM concept
number,f = (fi)iJ1,nK external activations coming
from sensor fuzzyfication,a=(ai)iJ1,nK innner acti-
vations,L=(Lij)(i,j)J1,nK2 link matrix,G : (<2)n →
<n a comparison operator andS a standardization
function transforming each coordonate by the sig-
moidal function: σ(x)= 1+δ

1+e−ρ(x−a0) − δ, with pa-
rameters(δ, ρ, a0) ∈ {0, 1}×<+

∗ ×<. FCM motor
concept defuzzyfication at momentt + δt ≈ t pro-
vides image-effectors. For more clearness, we note
a the resulting inner activationsa(t + δt) in next
paragraphs.

3. The third stage recursivly generates sets of pseudo-
activations(Pi)i∈J1,nK translating an orientation for
FCM dynamics. The principle consists in going up
the influence graph from motor concepts towards
perceptive concepts proposing pseudo-activation
values according to meta-knowledge about learn-
ing and bringing image-effectors closer to model-
effectors estimation. We did not use the method of
gradient backpropagation [Rumelhart 86]. FCM is
a cyclic process and its topology is not organized
in layers (recurrent links). In addition, the method
of gradient backpropagation does not hold graph
semantic and we wished to have the possibility to
apply specific meta-knowledge to a specific node.
Let’s detail the recursive process:

Initialisation m = 0: entering into the FCM from
effectors. A setI0 represents indices of concepts de-
fuzzyfied onto image-effectors. For eachi ∈ I0, we
apply the decision learning meta-knowledge: two
potential pseudo-activationsp±i = σ(a0± 2αi

ρ ) sim-
ulate an active/inactive conceptCi, αi ≥ 1 translat-
ing choise radicality. With theai value, that makes
3 possible pseudo-activationspi = ai, p+

i or p−i
for eachCi. The3CardI0 combinations are defuzzy-
fied, compared to model-effector estimation and the
best combination(p0,{}

i )i∈I0 is kept (the 0 deals
with defuzzyfication and the{} is a set of future la-
bels). ∀i ∈ I0, Pi = {p0,{}

i }. The other pseudo-
activations sets(Pi)i∈(J1,nK\I0) are empty.

Progression fromm to m + 1: Let Im ⊂ J1, nK
be the index set of concepts whose desired pseudo-
activation set is not empty. Fori ∈ Im, noteai

(reps. fi) inner (resp. extern) activation of con-
ceptCi, Pi = {pk1,{··· }

i , · · · , p
kL,{··· }
i } its desired

pseudo-activation set which cardinal equalsL and
J ⊂ J1, nK the index set of concepts which are
causes for the conceptCi (i.e.:Lji 6= 0) and such
that the arc fromCj to Ci has not been studied:
∀λ ∈ J1, LK, j 6= kλ. We will calculate pseudo-
activationsPj for j ∈ J as follows:

• For eachj ∈ J , we apply the decision learn-
ing meta-knowledge: two potential pseudo-
activationsp+

j andp−j are calculated (2) so that
their influence onai causes a clear choise be-
tween an activeCi or an inactiveCi, taking
into account external activations, withα ≥ 1
translating the choice radicality:

p±j =


a0 ± 2αj

ρ
− fi −

∑

l 6=j

Llial


 /Lji

(2)

• Then we randomly select aλ ∈ J1, LK.
That gives a p

kλ,{··· }
i ∈ Pi and we

choose among the3CardJ possible combina-
tions pi

j = aj , p+
j or p−j for j ∈ J , the

one p
i,{··· ,kλ}
j which gives aCi activation

σ
(
Gi(fi,

∑
j Ljip

i
j)

)
the nearest topkλ,{··· }

i ,

• Thus we obtain a new set of concept indices
with a not empty desired pseudo-activation set:
Im+1 = Im∪J with Pj = Pj∪{pi,{··· ,kλ}

j }for
j ∈ J .

Termination: if for eachi ∈ Im, the corresponding
J set is empty, every arc belonging to paths arriving
into (Ci)i∈I0 has been studied.

We use a discrete method by proposing three
pseudo-activations. We choose a discrete method al-
lowing us on one hand to limit the calculations and
on the other hand to translate a radical choice. We
argue that to learn semantic purpose, proposed mod-
ifications have to correspond to radical choices and
not to light modifications.

4. The fourth and last stage modifies FCM link
weights, in order to direct its dynamics towards a
behavior approaching the model. Contrary to Kosko
who uses a cycling cycle and a learning rate decreas-
ing with time (see [Dickerson 94] page 186), we
make only one stage from inner activationsa to link
corresponding desired pseudo-activationsp for the
weight modification without cycling and preserve a
constant learning rater(t) = R, in order to ensure a
strong adaptivity for our virtual actor. Formally, not-
ingA ⊂ J1, nK2 the arc set of the FCM,β ∈]0; 1+δ[
a sensitivity level ands : < → {−1, 0, 1} the dis-
crete functions(x) = −1, 0 or 1 if respectively



x ≤ −β, −β < x < β or x ≥ β, the learning
algorithm follows the equations:

∀(i, j) ∈ A, if ∃k ∈ J0, nK, p
k,{··· ,i,··· }
j ∈ Pj ,

we take such a k and :



∆i = s(pj,{··· }
i − ai), ∆j = s(pk,{··· ,i,··· }

j − aj)

Lij (t+1)=
∣∣∣∣
Lij (t) + R(∆i∆j − Lij (t)) , if ∆i 6= 0
Lij (t) , if ∆i = 0

else Aij 6∈ {path to effectors} : Lij (t+1) = Lij (t)

(3)
It is to note that we preserve a coherence in our
modification of links according to the initial proto-
type furnished by the expert. Thus, the following
possibilities are forbidden: link emergence, link
suppression, or modification of the sign of a link.
We also keep some link weights inside given
bondariesBij = [Lmin

ij , Lmax
ij ] so that the adapted

behavior remains believable according to the expert:
if Lij (t+1) < Lmin

ij then Lij (t+1) = Lmin
ij and if

Lij (t+1) > Lmax
ij thenLij (t+1) = Lmax

ij . Moreover,
the expert can decide to immobilize the weight of
one or several links, therefore they will not be mod-
ified during the learning process. To immobilize
links or to impose limits allows to adapt prototypic
FCMs while preserving a "personality".

RESULTS

Our applications show a sheepdog gathering sheep.
During the simulation one or several sheep can move
away from the gathering zone. When approaching a
sheep, the dog frightens it and obliges it to regain this
zone. The dog simulates in its imaginary world several
strategies to gather sheep. We have implemented three
applications showing a sheepdog gathering sheep. First,
the dog learns a way of gathering sheep by the imitation
of a human operator or another dog. In that case, the pro-
totypic FCMs used is its own FCMs. Second, an adap-
tation of dog’s prey prototype to a given sheep occurs in
real time. This application is described in this section.
Third, a paranoiac sheep learns how to be surrounded by
other sheep remains frightened but does not flee any more
when viewing a dog. To immobilize paranoiac links al-
lows to adapt sheep behavior while preserving a paranoid
“personality”.

To simulate sheep behavior, the dog uses prototypic
FCMs of prey from its behavioral library. Actually, the
dog represents each sheep behavior by prototypic FCMs
of prey in its imaginary world. Each sheep is associ-
ated with its own prototype. Thus the dog can simulate
sheep behavior and can do predictions. Prototype will be
adapted to a sheep by imitation. A FCM controls the pro-
totype’s speed and another controls the prototype’s angle.

The comparison between the result of the imaginary
world and the virtual world allows an adaptation of proto-
typic FCMs in real time by learning. The figure (1) illus-
trates the modification by imitation of prototype’s speed

that defined the representation of one sheep’s speed used
the imaginary world. We imposed the learning period.
Such a period allows the convergence of the process.
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Figure 1: FCM of perceptive prey is coming from the
library of prototypic FCMs and adapts itself by learning.

The dog observes the sheep to imitate. It adapts the
prototypic behavior of prey allowing it to simulate the
sheep’s behavior in its imaginary world. By simple ob-
servation of the sheep to imitate, it estimates information
necessary to the fuzzyfication for the prototype. The esti-
mation of sensors values are fuzzyfied in activation of the
concepts “Enemy close” and “Enemy far”. The dynamic
of the prototype occurs and by defuzzyfication of the ac-
tivation of the effector motor “Escape envy” we get the
image effector. Its corresponds to the representation that
the dog has of prey’s speed. This image effector from pro-
totype is compared to an estimation of sheep’s effectors.
This comparison allows to calculate a set of pseudo ac-
tivations that define desired modifications of FCM links.
The prey prototype adapts itself to a sheep by reiterating
the learning process. In pratice, the congercence occurs.

On figure (2), we compare the simulation of sheep
behavior from prototype in the imaginary world and the
sheep behavior in the virtual world, before and after
learning while the dog performs the same trajectory. We
note that the simulation is closest to reality after learning.
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Figure 2: Learning by imitation allows to get more perti-
nent predictions from the imaginary world.

CONCLUSIONS AND FUTURE WORKS

Our Animat possesses a behavioral library composed
by prototypic FCMs. While acting in the virtual world,
the prototypic FCMs allows him to simulate other actors’
behavior in its imaginary world. It simulates different
strategies, allowing him to carry out predictions. We use
FCMs because they represent an explicit knowledge and
provide perception and emotions to theAnimat. We have



presented a learning algorithm allowing an adaptation of
the prototypic FCMs to imitate a given actor. This adapta-
tion provides a more pertinent imaginary world and there-
fore theAnimatcarries out predictions closest to the re-
sults of the virtual world. Our learning by imitation uses
meta-knowledge from description of the prototypes by
an expert, allowing to preserve the "personality" and the
emotions of the prototype. In addition, our learning is
based on a behavioral prototype allowing to simulate the
model behavior to imitate. Moreover, we do not have to
modify the structure of the influence graph of the FCM,
the fuzzyfication of the sensors, and the defuzzyfication
of the concept motors. Future works will try to set up
a process that selects a prototype in the library by sim-
ple observation of the model behavior to imitate. Also,
we work on the the adaption of the fuzzy transformations
associated to the fuzzyfication and defuzzyfication.
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