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ABSTRACT

The believability of a virtual world can be increased by
improving the behavior of the characters in it. Consid-
ering literature, we choose a model developed by Le Hy
to generate the behaviors by imitation. The model uses
probability distributions to find which decision to choose
depending on the sensors. Then actions are chosen de-
pending on the sensors and the decision. The core idea
of the model is promising but we propose to enhance the
expressiveness of the model and the associated learning
algorithm. We hope the model will be able to generate
more believable behaviors and learn them with minimal
a priori knowledge. We first revamp the organization of
the sensors and motors by semantic refinement and add
a focus mechanism in order to improve the believabil-
ity. To achieve believability, we integrate an algorithm
to learn the topology of the environment. Then, we re-
vamp the learning algorithm to be able to learn much
more parameters and with greater precision at the cost
of its time of convergence.

INTRODUCTION

Presence is one of the main goals of virtual worlds. It
consists in making the users of those environments feel
like they are in the simulation. To do so, there must be
many rich interactions between the user and the virtual
world. One option is to populate the simulation with en-
tities which exhibit a believable behavior (Bates 1994).
The main difficulty is that in virtual worlds, some enti-
ties may have unpredictable behaviors, like for instance
users’ avatars. It may lead to unexpected situations
which artificial entities may not be able to handle cor-
rectly, exhibiting unadapted behaviors. Regarding this
kind of problems, it is necessary for the entities to be
able to dynamically evolve. We propose to provide
our entities with imitation learning abilities in order to

adopt a real player’s behavior.

Video game companies want the players to be im-
mersed in the simulation. To achieve this, they create
rich and complex virtual worlds. Thanks to these kind
of work, researchers can avoid some technical difficul-
ties (rendering, physics, networking, etc.) by using such
games and then focus on the entities to be studied (Mac
Namee 2004). Furthermore, and as a feed-back effect,
since video games are made for human users and often
popular, they offer a real challenge for the entities to be
believable.

In this article we first give an overview of the kind of
models which drive entities’ behaviors in video games.
Then we focus on a model from Le Hy, which seems to
fit our need for both believability and imitation learn-
ing. Then we propose some modifications in order to
make the virtual character more believable and capable
of learning almost all the parameters of the model.To
conclude, we give explanations about how we would like
to evaluate the believability of our model.

LITERATURE

In the video game industry, most of the games are
scripted to have a storyline, models must be flexible and
readable enough to be adjusted by game designers. An-
imation is also important so models have to handle low
level details. As a consequence, very simple models are
still used such as finite state machines (FSMs). They
are easy to read and give a good control on how the
character will behave. The main drawbacks are that it
is hard to code complex behaviors, difficult to maintain
and they need a lot of time to be parametrized correctly.

An alternative to FSM are behavior trees. They give
the same control over the character’s behavior but it is
a lot easier to code and maintain. However, they are
still not widely used is the video game industry and, as
FSM, they lack of expressiveness for complex behaviors.



Bayesian-based approaches

Recently, some Bayesian-based approaches have been
used to control characters in video games. The model
described in (Gorman et al. 2006a) tries to apply to a
video game a Bayesian model of imitation previously de-
veloped in (Rao et al. 2004). The believability of this
model has been studied in (Gorman et al. 2006b). The
model, however, does not seem to offer easy generaliza-
tion. But it shows that a Bayesian approach fits to our
need for believability and compatibility with imitation
learning.

A specific Bayesian-based model (Le Hy et al. 2004)
has been developed for characters in video games. The
advantage of this model is that it is quite easy to modify
so that the character acts as wanted. It is also possi-
ble to learn the parameters of the model by imitation.
The believability of the behaviors has not been carefully
evaluated but some preliminary tests show that it may
be comparable to models from industry. This last model
will be our base for future work because it is quite close
to FSM which give good results. It has also more expres-
siveness, partly because it uses probabilities, and has an
imitation learning algorithm. We believe that choosing
a model, more complex than what is used in industry
but less complex than cognitive or multi-agents model,
is a good mean to generate believable behaviors. Indeed,
using that approach, it is possible to generate complex
behaviors, still being able to understand and modify the
internal parameters to achieve the best believability.

Le Hy’s model

In Le Hy’s model, the agent has sensors named
S = (So,..,Sn). They give information on internal
and environment’s state like for instance the charac-
ter’s inventory and the position of another character.
Agent’s movements are driven by motors named M =
(Mo, ..., M) which can be rotation, jump commands
and so on. Both sensors and motors take discrete val-
ues. In order to simulate the character’s behavior, the
notion of decision has been introduced, the associated
variable is named D and may have different values like
searching for an object or fleeing.

The value of D?, where t is the time, is chosen accord-
ing to the value of the sensors, following the probability
distribution P(D?|S), and to the previous decision, fol-
lowing the probability distribution P(D!|D*~1!). Thus
the value of D is chosen following the probability distri-
bution P(D*|S*D'~1), the decision model, computed us-
ing the two previous distributions. As S is the conjunc-
tion of n variables, Le Hy introduces the notion of in-
verse programming to reduce the complexity: P(D?|S?)
is computed using P(S!|D') (and not P(D!|S!)!) as

they are assumed to be independent, which is a strong
assumption.

Once the value of D! is chosen randomly following
the distribution P(D!|S!D*~1), the model must decide
which motor command should be activated. The value
of each motor command is chosen following the distribu-
tion P(M!|S'D?), the motor model. Again, to reduce
the complexity, Le Hy introduce the notion of fusion
by enhanced coherence. Each command is computed
separately then they are combined using the formula
P(M}|S'DY) =  [1, P(M{|SiD") where 1/Z is a nor-
malization factor.

Thus the model, which can be categorized as an input-
output hidden Markov model, is composed of three types
of parameters whose relations are summarized in figure

1:
o P(D'|D' 1)
o P(S!|DY)
o P(M!|S!D")

Figure 1: Summary of the influences between model’s
variables (Le Hy et al. 2004).

Those parameters can be specified by hand or learned
by imitation. Results seems to be better in term of
believability and performance with learned parameters.
The imitation is done by observation of the virtual rep-
resentation of the player, his avatar also named the
demonstrator. By monitoring at each time step the
values for S and M for this demonstrator, it is possi-
ble to update the value of the parameters. The learn-
ing algorithm developed by Le Hy is based on (Florez-
Larrahondo 2005) but only updates the decision model,
the parameters P(D!|D'~!) and P(S!|D?).

This algorithm, a modified version of the incremental
Baum-Welch, updates at each time step the parameters
with the following formula:

P,(D'|D'™Y) = %(Pn_l(Dt|Dt’1)+APn_1(Dt|Dt’1))

P.(S'|D") = %(pn,l(stwt) + AP, (51DY)



1/Z is a normalization factor. The A are computed
using the motor model, P(M{|S%), and the actual values
of the decision model, P,,_;(D!|D*~') and P,,_1(S?|D?).

Limits

As believability is based on the feeling of an observer, we
have to examine the behaviors produced by the model
to see its real advantages and drawbacks. Based on
those observations, we can propose some modifications
to compensate potential flaws.

The main flaw of agents using Le Hy’s model is the
way they move in the environment. We noticed that its
movements were not very smooth and gave an overall
feeling of non-humanness. Moreover, it often chose mo-
tor commands which seem not to satisfy any goal. How
the agent act is very important because it gives the first
impression to observers.

On top of the movements, the paths the agent uses
to go from one point of the environment to another do
not look like the ones a player would take. This problem
does not comes from the model itself but from the repre-
sentation it uses for the environment. Indeed, the agent
uses navigation points placed by the designers of the
environment which may not represent well how players
prefer to use the environment.

The implementation of Le Hy’s model has not enough
sensors to exhibit the whole range of behavior a layer
would exhibit. Le Hy’s model is flexible enough for new
sensors to be added. However increasing the number
of perception make the learning more difficult because
it increases the parameters. A compromise should be
found to give enough information to the agent without
adding unnecessary complexity to the model.

CHAMELEON: LE HY’S MODEL ENHANCE-
MENTS

Despite the problems raised, the implementation of Le
Hy’s model showed that the decision sequencing using
Bayesian programming is quite efficient and simple to
settle. The concept of decision makes the behavior easy
to adjust by modifying the probabilities value. This is
why we decided to follows Le Hy’s general idea. First,
a decision is chosen knowing the previous one and some
information about the environment. Then actions are
done depending on the decision and the environment.
However some limitations were raised during our differ-
ent experiments so we modified the way the decision and
the actions are chosen and how the sensors and actions
are linked to the decision in several ways.

Improvements On Le Hy’s Decision Model

The first change we made is to apply a semantic refine-
ment on sensors, splitting them in two types: high level
ones (random variables H;) and low level ones (random
variables L;). As decisions represent general behaviors
(attacking, fleeing, etc.) the agent does not need a very
accurate information about the environment to make
its choice. However, in order to accomplish any action
according to the chosen decision, the agent needs much
more accurate values (to aim or to run avoiding walls for
instance). This should increase the amount of available
information for the agent without increasing too much
the parameters.

The second change is to regroup actions into three
types: motion, interaction and reflexive actions. A mo-
tion action (random variable M) gathers all the motor
commands needed for the agent to be able to move in
the environment. In our case it is a combination of five
motors: pitch, yaw, run, lateral movement and jump.
The difference with Le Hy’s model is that we do not
assume that all the motor commands are independent.
As a consequence, the agent has a better control of how
it moves at the cost of increasing the number of pa-
rameters in the model. An interaction action (random
variable I') regroups all the motor commands needed for
the agent to interact with other players or objects in
the environment. In our case there is only one motor:
shooting or not. The last kind of action is the reflexive
action (random variable R): it models any action that
the agent applies to itself. In our case there is only one
motor: changing the current weapon. The main differ-
ence between reflexive actions and the other actions is
that they depend on the current decision and the high
level sensors whereas the other actions depend on the
current decision and the low level sensors. This mod-
els the fact that the agent does not need very accurate
information about its surroundings in order to achieve
reflexive actions.

The third and last change to the model is to replace
the mechanisms to reduce the complexity resulting from
the number of possible values for sensors. The first
mechanism used by Le Hy is the inverse programming
where P(D!|D'"1S%) is computed using P(S!|D?), as-
suming that all sensors are independent knowing the de-
cision. This assumption may be wrong depending on the
chosen sensors, and moreover, the more sensors used the
higher the chances the assumption may be wrong. The
second mechanism is the fusion by enhanced coherence.
This technique suffers some simple problems: it makes
use of probability distributions, but handle them in total
opposition with their natural properties. The main aim
of this technique is, in the end, to consider a weighted
sum of probability distributions, which is easily and rig-



orously achieved with the sum of random variables over
a random index. Therefore, we propose to use instead a
mechanism where the agent focus on one high level sen-
sor and one low level sensor. This focus mechanism use
two distributions P(G?|H?) and P(J!|D!L?) where the
random variables G and J gives respectively the index
of the high level sensor the agent focus on and the index
of the low level sensor the agent focus on. H! and L?
are respectively the conjunction of all the high and low
level sensors. As a result, we must simplify the expres-
sion of the two distribution because they may take far
too many values to be tractable. We propose to express
the distributions as follows:
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The higher the values of 6§ and A, the more likely the
agent will focus on the associated sensor. This greatly
reduces the number of parameters still giving the agent
a mechanism to focus only on one sensor.

The model works in the following way (see figure 2):

e Pick an index ¢ of a high level sensor, using (1)

e Pick a decision using P(D!|D'~1H;)

Pick an index j of a low level sensor, using (2)

Pick a motion action using P(M*|D'L;)

e Pick an interaction action using P(I*|D'L;)

Pick a reflexive action using P(R!|D'H;)

Figure 2: Summary of the relation between the random
variable of the model.

Learning the Environment

To be able to learn the parameters of the model, the
learning algorithm first needs sensors and motors which
represent best how players interact with the game.
While most of them are defined by hand, creating a
representation of the environment is a quite tedious
task. As a consequence, we looked for techniques to
learn by imitation such a representation. Few works had
been done on this subject, but an interesting technique
(Thurau et al. 2004) tries to learn the movement in a
virtual world by imitation. It uses a algorithm named
neural gas to learn navigation points from the positions
of a player’s avatar. This algorithm has the advantage of
being on-line: it learns at each observation of the player.
Therefore, the neural gas can be used and learned at the
same time, the character evolving during the game.

As this technique seems promising, we tried to apply a

Growing Neural Gas (GNG) on the observed positions.
The GNG (Fritzke 1995) is a graph model which is able
to achieve incremental learning. Each node has position
(x,y,2) in the environment and has a cumulated error
which measures how well the node represents its sur-
roundings. Each edge links two nodes and has an age
which gives the time it was last activated. This algo-
rithm needs to be omniscient, because the position of
the imitated player (the demonstrator) has to be known
at any time. The principle of the GNG is to modify its
graph, adding or removing nodes and edges and chang-
ing the nodes’ position for each input of the demonstra-
tor’s position. For each input the closest and the second
closest nodes are picked. An edge is created between
those nodes and the closest node’s error is increased.
Then the closest nodes and its neighbours are attracted
toward the input. All the closest node’s edges’ age is
increased by 1 and too old edges are deleted.
We trained 2 GNG on 2 different maps. The first one
is a simple map, called Training Day, it is small and
flat which is interesting to visualize the data in 2 di-
mensions. The second one, called Mixer, is much bigger
and complex with stairs, elevators and slopes which is
interesting to see if the GNG behaves well in a real three
dimensional environment. The results are shown in fig-
ure 3 (a) for the simple map and in figure 3 (b) for the
complex map.

In order to study the quality of the learned topology,
we first chose to compare the GNG’s nodes with the
navigation point placed manually by the map creators.
Of course, we do not want the GNG to fit exactly those
points but it gives a first evaluation of the learned repre-
sentation. In our case we know those navigation points
but our goal is that they become not longer necessary
for a character which evolves in a new environment. Fig-
ure 4 shows both the navigation points and the GNG’s



nodes. As we can see, the two representations look alike
which indicates that the model is very efficient in learn-
ing the shape of the map. However, there are zones
where the GNG’s nodes are more concentrated than the
navigation points and other where they are less concen-
trated. We cannot tell now if it is a good behavior or not
as we should evaluate an agent using this representation
to see if it navigates well. Even in the less concentrated
zones, the nodes are always close enough to be seen from
one to another, so it should not be a problem.
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Figure 3: Result of a growing neural gas learned from a
player for a simple map, top view (a) and for a complex
map (b).

As the attraction applied to the nodes for each input
is constant, the GNG is not converging to a stable state.
This is a desired behavior, allowing the GNG to adapt
to a variation in the use of the map: if the teacher sud-
denly uses a part of the map which he/she has not yet
explored, the GNG will be able to learn this new part
even if the GNG has been learning for a long time.
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Figure 4: Comparison of nodes learned by the growing
neural gas with the navigation points placed manually
by the game developers.

Learning the Parameters Of The Decision Model

In order to learn the parameters of the model, Le
Hy uses a modified version of Florez-Larrahondo’s in-
cremental Baum-Welch algorithm. We prefer not to
use this algorithm because it has to approximate very
roughly the probabilities computed by the backward
procedure. In our case such probabilities give the
chances of taking a certain decision at ¢ knowing what
the demonstrator did at ¢t 4+ 1...7. This information
should not be lost (for instance, if the demonstrator is
looking for something specific, the learning algorithm
cannot know what it is picked up). As a consequence, it
seems wiser to learn on a whole sequence of observations
(from time O to time T') instead of using an incremen-
tal version. We choose to begin the sequence when the
demonstrator’s avatar appears in the environment and
end the sequence when the avatar dies.

We also want to extend the learning to all the distri-
butions and not only the ones used to pick a decision.
In order to do that, we apply a EM algorithm to our
model to optimize the parameters. For each sequence
of observations of a demonstrator, our algorithm gives a
local maximum of the likelihood function. The quality
of this local maximum depends on the initialization of
the distributions and some modification we can do to
the parameters during each maximization step. At the
time we write this article, we use a random initialization
and a technique to make the distributions less uniform



using the formula a = %a", a being a probability, % a
normalization factor and n > 1.

# and \ are the only parameters that are not learned.
Our first attempts to find solutions that optimize the
likelihood function using a gradient method did not give
good results. On the contrary, specifying them by hand
and making the model learn on demonstrators gives
quite good results, the agent being able to move in the
world and shoot at enemies (although an accurate shoot-
ing procedure is hard to learn and it may be enhanced
by specific heuristics).

CONCLUSION

Virtual worlds, like for example video games, need be-
lievable characters for users to feel in the environment.
For virtual characters, actual solutions in research focus
on intelligence with cognitive or multi-agents approach.
In the industry, the goal is mainly believability but the
models often generate too simple behaviors.

Le Hy’s model seems to fill the gap between the two
approaches, focusing on believability but trying to pro-
duce quite complex behaviors. To have a first look on
the results of the model we implemented it. The result
is very flexible, behaviors can be easily specified. How-
ever agents are not as believable as what is done in the
industry. This difference can come from the assumption
done in the model and because characters designers in
the industry spend a lot more time to specify the be-
havior rules.

We first propose some modifications to Le Hy’s model
by rearranging the sensors and the motors and by adding
a focusing mechanism. We hope these changes will en-
able the model to produce more complex behaviors. We
then introduce the growing neural gas to learn the to-
pography of the environment. Finally we apply an EM
algorithm to learn how find a decision and to carry it
out.

The learning algorithm still need some enhancements
to be complete. 6 and A are not learned yet and tech-
niques to find maxima close to the global maximum are
still to be found. Then, the next step is to evaluate our
work by gathering a pool of player to let the agent learn
from their behavior. When the learning is done, we
will try to assess the believability of our agent. Believ-
ability is very difficult to evaluate because it is subjec-
tive. We will do a test based on (Turing 1950; Gorman
et al. 20060), using humans as judges.
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