
Expert Systems with Applications 38 (2011) 8446–8457
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
An expert system manipulating knowledge to help human learners
into virtual environment

Cédric Buche ⇑, Ronan Querrec 1

Université Européenne de Bretagne, Ecole Nationale d’Ingénieurs de Brest, Laboratoire Informatique des Systèmes Complexes, Technopôle Brest-Iroise, 29238 Brest Cedex 3, France
a r t i c l e i n f o

Keywords:
Knowledge representation
Multi-agent system
Intelligent tutoring system
Classifiers system
Virtual learning environment
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.01.040

⇑ Corresponding author. Tel.: +33 298058966; fax:
E-mail addresses: buche@enib.fr (C. Buche), querre

1 Tel.: +33 298058966; fax: +33 298058979.
2 PEGASE: PEdagocial Generic and Adaptable SystEm.
a b s t r a c t

This research is situated within the context of the creation of human learning environments using virtual
reality. We propose the integration of a generic and adaptable intelligent tutoring system (PEGASE). The
aim is to instruct the learner, and to assist the instructor. The multi-agent system emits a set of knowl-
edge (actions carried out by the learner, knowledge of the field, etc.) used by an artificial intelligence to
make pedagogical decisions. Our study focuses on the representation of knowledge about the environ-
ment, and on the adaptable pedagogical agent providing instructive assistance.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many fields of learning, such as driving, or the professional
training undergone by firemen, requires the learners to experience
the setting in which they will work. These learners must therefore
acquire not only knowledge, but real hands-on skills. Virtual envi-
ronments (VE) immerse the learners in situations such as these. For
example, Fig. 1 represents a road safety application (ARÉVIROAD)
(Herviou & Maisel, 2006), a SEVESO plant application (Edward,
Lourdeaux, Lenne, Barthes, & Burkhardt, 2008) and GASPAR for
logistics on aircraft carriers (Marion, Septseault, Boudinot, &
Querrec, 2007).

The work is designed for teaching decision-making in VE. Tutor-
ing system to instruct the learner and to assist the instructor al-
ready exists (Lourdeaux, Burkhardt, Bernard, & Fuchs, 2002;
Rickel & Johnson, 1999), but are dedicated to a specific VE. In this
paper, we propose an independent VE tutoring system, called PE-

GASE,2 in the domain of procedural and collaborative work.
2. Context: acquisition of skills using virtual environments

Traditionally, most training programmes aim to teach knowl-
edge. In this context, we propose the use of Intelligent Tutoring
Systems (ITS) in which this knowledge is used in conjunction with
the training setting. In this case, knowledge can be manipulated
(Romero & Ventura, 2007), to automatically question the learner,
for example. To be competent does not only mean acquiring
knowledge, but also how to use that knowledge. In order to facilitate
ll rights reserved.

+33 298058979.
c@enib.fr (R. Querrec).
the acquisition of knowledge, we must provide the learner with the
right setting. In order to do so, we suggest using interactive sys-
tems by which the learners can be immersed in VEs in which they
can make trial attempts, take initiatives, make mistakes, and try
again in similar situation (which may not be possible in reality).
The simulation therefore provides an environment common to
the learner, the instructor, and to the skill to be acquired. It medi-
ates the learning relationship (learner-skill) as well as the instruc-
tive relationship (instructor-learner). Thus, computer-generated
simulations, combined with an ITS, create the opportunity to
improve learners’ skills by associating knowledge with the oppor-
tunity to put their skills into practice.

ITS have already been used without being associated to virtual
reality. As Wenger (1987) has shown, they usually conform to
one of four models. The first, known as the domain model, contains
a representation of the knowledge linked to the skill to be
acquired. ITS also use a learner model which defines his/her per-
sonal characteristics and ascertains the condition of the knowledge
at a given moment. Using the domain and learner models, the ITS is
able to evaluate the knowledge acquired by the learner by compar-
ing his/her activity with information about the field (Keles, Ocak,
Keles, & Gülcü, 2009). However, the main objective of the ITS is
to the provide appropriate assistance to the learner (Wang, 1997)
or the instructor, depending on the setting (following the activities
or offering assistance). In this context, the pedagogical model can
be used to make choices with regards to the training objective,
with the aim of facilitating learning. Finally, an interface model is
used to exchange information between the system and the user.
For now, this model has not been reified in existing VEs designed
for learning.

Within the context of our VE, we consider an ITS as a system
which is part of the human Virtual Learning Environment (VLE).
We propose to evaluate the extent to which ITS are integrated

http://dx.doi.org/10.1016/j.eswa.2011.01.040
mailto:buche@enib.fr
mailto:querrec@enib.fr
http://dx.doi.org/10.1016/j.eswa.2011.01.040
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

Fig. 1. From left to right: screenshots from the ARÉVIROAD, VIRTHUALIS and GASPAR applications.

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8447
within existing VLE. We have grouped VLE according to three
categories:

1. VLE as classical simulators
This first category groups together those applications which
include none of the four models, such as the application
designed to assist both in the maintenance and control of
mobile cranes (Levesque, 2003). In this kind of VE, the system
provides no explanations about the task to be performed, which
would require a domain model. The environment is therefore
unable to adapt to the learner, as this would require a learner
model. Finally, the teaching method is the instructor’s responsi-
bility. The system is not able to make decisions regarding
instructive interventions, however, a system like this one can
help learners to improve or modify pre-existing skills.

2. VLE with domain and/or learner models
This second category of VE is made up of applications which
include a domain model and/or a learner model (Hubal,
2008). The most well-known example of this type of VE is STEVE,
a virtual character who assists in both teaching and learning
procedural tasks (Rickel & Johnson, 1999). Using the domain
model, STEVE can demonstrate and explain the procedure and
above all, verify the learner’s actions. However, STEVE intervenes
on demand. He is incapable of knowing when, how and why to
intervene, which would require a pedagogical model. In a sys-
tem such as this it is possible to acquire skills, but the participa-
tion of the instructor is still required for all pedagogical
interventions.

3. VLE with domain, learner, and pedagogical models
This final category groups together the VEs presenting not only
domain and learner models, but also a pedagogical model
(Amokrane, Lourdeaux, & Burkhardt, 2008). Let us examine
the example of the educational agent HAL, from the FIACRE sys-
tem (Lourdeaux et al., 2002). The application is designed to
instruct individuals in learning to drive TGV trains (Train
Grande Vitesse), using virtual reality (intervention on railways).
As well as having all of STEVE’s abilities, HAL assists the instruc-
tors in structuring pedagogical discourse. In concrete terms,
each anticipated behavior corresponds to a different instructive
assistance (additional information, explanation of an object,
etc.). The instructor must therefore list the possible errors for
each piece of knowledge to be acquired. Furthermore, for each
of these errors, the instructor must specify the way in which
these pedagogical strategies should be conducted through
instructive assistance, and indeed he must do so for each
exercise. The main advantage of this kind of VLE lies in the
assistance to the instructor in terms of the educational relation-
ship linked to the learner, and in the didactic relationship linked
to the skill to be learnt. However, the instructor must specify all
of the knowledge to be acquired for each exercise.

Thus, most VLE only include the representation of knowledge
about one specific domain. Systems proposing a diagnostic compo-
nent only provide a mechanism for instructive assistance. HAL
seems to us to be the most successful of these systems. However,
the instructor must still make a list of the possible errors and spec-
ify the pedagogical strategies for each exercise. Furthermore, the
impact of the instructive assistance on the learner is not taken into
consideration. In concrete terms, any proposed assistance which
does not help the learner to make progress will be reproposed each
time that specific situation occurs.

In order to resolve these shortcomings, we propose the integra-
tion of an intelligent tutoring system within a VE. This system must
propose a flexible pedagogical model, i.e. a model in which instruc-
tive concepts can be easily added, modified or deleted. Further-
more, a model such as this must be generic, in so much as the
pedagogical model must be exploitable independently of the task
to be performed. Finally, the knowledge of the pedagogical model,
along with its past experience, could be used to automatically sug-
gest the appropriate interventions by taking into account both the
learner and the context of the simulation: the system therefore be-
comes adaptive. Our model is called PEGASE (PEdagogical Generic
and Adaptive SystEm).

In the next section, we will describe the global architecture of
PEGASE. We will then go onto present our domain model (see Section
4). This will then lead to our description of our pedagogical model
(see Section 5). We shall then go onto discuss the advantages of our
proposed models (see Section 6). It must be noted that the proposal
described here is applicable within the context of the learning of
procedural and collaborative tasks and cannot be used in general
learning situations.
3. Proposing an intelligent tutoring system: PEGASE

Our proposal consists of reifying the four classical ITS models
(domain, learner, pedagogical, interface), within a VE. We believe
that errors can provide crucial information and thus decided to
introduce a model called ‘‘error model’’. It is through the use of
this new model that we will be able to generalize (where HAL

could not do so). Furthermore, we have also added an ‘‘instructor
model’’, in which the instructor specifies the knowledge about the
exercise to be performed. He defines the guidelines which
describe the procedure(s) to be carried out, and the role(s) played
by the learner (and consequently those which must also be acti-
vated automatically).

These models must provide solutions to the shortcomings of the
existing systems as detailed above and must therefore display two
important characteristics: genericity and adaptability. We there-
fore suggest that, from a VE, it is possible to transplant a generic
and adaptive ITS by reifying the 6 ITS models.

In order for each model to be able to share its information and
conduct its analyzes autonomously (independently of both the sit-
uation and of other models), an autonomous entity (known as an
agent) is associated to each model. The agents interact by exchang-
ing messages containing data (see Fig. 2). This data can be ex-
tracted from the situation or inferred from the agent’s internal
reasoning from its knowledge (the model to which it is linked).

Fig. 2. The instructive process of our five-stage system.

Table 1
Layers of modeling (Mi): the positioning of Veha within the Mof guidelines, in parallel
to Uml.

M4 Mof (Uml limitation)

M3 Meta–model Uml Veha metamodel
M2 Uml user model VE1 model . . .

M1 User object VE1a VE1b

8448 C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457
Step 1. Observation:
Using the interface model, the system analyzes the learner’s
activity. The elements that are important for learning are sup-
plied to the learner model. This information concerns the lear-
ner’s actions, those elements which the learner can observe, and
the learner’s movements.
Step 2. Detecting and identifying an error:
The system analyzes the learner’s actions (learner model) and
compares them to the actions to be performed (domain model).
This confrontation is used in order to detect errors. If an error
has been detected, an error identification mechanism is set up
(using the error model).
Step 3. Proposing instructive assistance:
Using the learner model (characteristics, activities, errors, etc.),
and the domain model (knowledge of the organisational struc-
tures), a mechanism stimulating instructive reasoning recom-
mends the instructive assistance for the given situation. It
must be noted that this step is not optional; it intervenes even
if no error is detected.
Step 4. Choosing instructive assistance:
The instructor can choose one specific instructive assistance
amongst those proposed.
Step 5. Representing instructive assistance:
The instructive assistance selected is presented in the VE.

To use the information from the VE, we must inform the envi-
ronment in order to obtain controllable knowledge: we thus
achieve an informed VE (see Section 4). We must therefore reify
the environment. This knowledge is complemented by additional
information contained within the 6 ITS models. This data makes
up a knowledge base for the pedagogical model which we call
the pedagocical situation. This knowledge fuels the ITS’s motor for
making instructive decisions (see Section 5). An example of the
way in which the rules governing this motor are specified is pre-
sented in Section 5.3.

4. Domain model

For reification, we define the VEHA (VE for Human Activity)
metamodel. The aim of Veha is to provide a metamodel to describe
the VE, not in terms of geometric space, but by providing the
semantics required for the artificial agents (ITS, autonomous char-
acters) or humans (learners or instructors) to be able to construct
for themselves a representation of the environment and to act to-
gether to reach their goals. The Veha metamodel is based on Uml

and enables the construction of domain patterns from VEs and
from the corresponding concrete VEs (see Table 1). However, the
metamodel does not allow us to define the specific concepts of vir-
tual reality. In Veha, we propose to extend Uml in order to repre-
sent these concepts. The aim of this extension is to reify the
realistic VE in which humans carry out activities. However, it is
not adapted to all VE (metaphoric, phenomenological, etc.).

4.1. The Veha metamodel

The ITS needs to know which objects make up the VE, how to
access it, its properties, its behavior and how to interact with it.
Three kinds of knowledge can be expressed using Veha:

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8449
1. Domain concepts: This entails the semantic description of the
concepts relating to the field of activity concerned. This repre-
sents some of the knowledge that the learner must acquire
(Section 4.1.1).

2. The possibility of structuring and interacting with theenvironment:
These concepts resemble those suggested in smart objects
(Kallmann & Thalmann, 1998) which reify those properties
required for interactions. The means available to the learner
or to the ITS must be specified in order to modify the environ-
ment (Section 4.1.2).

3. Entities’ behavior: Within the framework of a VLE the environ-
ment’s reactions to the learner’s actions must be simulated.
Entities’ behavior also represents one of the elements of the
knowledge to be transmitted and must be enforceable (Section
4.1.3).

In the following part of this section, we shall explain how Veha

can be used to express these three kinds of knowledge.

4.1.1. Domain concepts
Knowledge of the domain is expressed both at the model (con-

cept) level, and at the level of the occurrences of these concepts
(tangible objects populating the environment). In Veha as in Uml,
this knowledge is represented by classes (Class) and instances
(InstanceSpecification).

In Veha, the notion of class is used to define a type of object
Fig. 8 from domain-specific ontology. The aim is to be able to apply
semantics to each of the domain concepts, whether or not they are
tangibly represented in the VE (concepts vs concrete objects). All
classes stem from the Element class. This class enables the identi-
fication of each of the elements of a domain model from its name
and the addition of a textual comment. This can be useful when
providing the user with explanations regarding the significance
of an object.

The structural properties (Property) and behavioral features
(BehavioralFeature) of the classes are assigned to the Classi-
fier

3 via the Feature class. The Property class represents the
structural component of the Classifier (as much the attributes
as the relationships with other domain concepts). As in Uml, the
Operation class is the only tangible sub-class of Behavioral-
Feature. It is used to express the effect that an object or a user
can have on another object. It does this by defining the object’s ac-
tual behavior rather than the method used to achieve that behavior.
The way in which the behaviors associated with Operation are
modeled is described using behavioral models (see Section 4.1.3).

After the notion of Class, Instance, synonymous of object, is
Veha’s second key concept. The InstanceSpecification, Slot
and AssociationInstance classes represent the instantiation of
de Class, Property and Association respectively. The term
InstanceSpecification indicates that here, we represent an
M1 level entity Table 1, independently of the circumstances in
which it is implemented.

The set of knowledge about the environment as specified in
Veha can be accessed by the ITS and by the users (learners or
instructors). The ITS can, for example, suggest to the learner a
list of operations to be performed on one specific kind of object.
Likewise, the instructor can modify the environment during the
simulation by changing the attribute values of a tangible object.

4.1.2. The possibility of structuring and interacting with the
environment

Within the context of VEs, most of the tangible objects within
those environments are represented geometrically, and are situ-
3 UML metamodel class which generalizes the concept of class.
ated within the environment. The learner must be able to observe,
recognize and manipulate these objects. The ITS also needs to be
able to manipulate them within the context of the instructive
assistance that it will implement (transparency, refocusing from
the learner’s point of view, etc.). Knowledge about the geometry
of these objects must also be specified so that the ITS will be able
to recontextualize its suggestions within the VE. These objects are
entities and all have the properties of the instances veha::Class
as well as geometric and topological properties Fig. 7.

Each entity is located at a global reference point. The Shape

class is used to assign an instance of EntityClass to a graphical
representation in the VE. It is possible to assign many forms to one
class of entity. The ITS can use this knowledge to highlight an ob-
ject or, on the contrary, to hide it. The TopologicalProperty

class supports the notion of location (position and orientation)
and is used to describe the topological properties of the elements
within the VE Fig. 7. It is possible to assign informed points to an
entity (Point) which can be used to create an interaction. This
information is used by the ITS to turn the learner’s attention to a
specific object, for example.

Any entity within the VE is an instance of EntityClass: the
Entity class, which derives from Kernel::InstanceSpecifi-

cation. The values of an entity’s properties are defined by its
slots. These therefore depend on the semantic, morphological,
geometric and topological properties of the objects within the VE
(supplied by InstanceSpecification).

4.1.3. Entities’ behaviors
When the learner carries out an action in the environment, that

environment must react in a realistic way for the learner to be able
to understand the consequences of his actions. The learner there-
fore constructs a representation of the entities’ behavior. For the
ITS to be able to regulate this representation, the knowledge of
entities’ behaviors must also be specified, as for the two previous
kinds of knowledge, and it must also could be executed.

The role of the Behavior package is to model the possible
behaviors of the entities within the VE; the objective being for
the model to be interpreted in real-time by a behavioral controller,
and to be introspected online. As for the structural aspects, intro-
spection relies both on the behavioral model (M2) and on its
‘‘instantiation’’, that is to say, the way it is carried out (M1). The
two classes which support these notions are Behavior and
BehaviorExecution (Fig. 6). The Veha entities have reactive
behaviors which are triggered by events that can be caused either
by the learner or by another of the VE’s entities.

Traditionally, behaviors are assigned pre-conditions and post-
conditions concerning the entities and the environment. Behav-
ioral modeling relies on state machines and the Uml activity model.
Finally, it can also be based on functions written in programming
language that can be consulted online (OpaqueBehavior). The
first two methods are introspectable; the ITS can therefore describe
or check the way the behavior is carried out.

The tutor can thus analyze, explain or check the context in
which an entity’s behavior is carried out by the learner. Better still,
if a particular behavior has been specifically described (state ma-
chine or activity) it can also explain the way it will be carried out.

4.2. Example of an environment in Veha

The Veha metamodel can automatically interpret a model de-
scribed in Uml. Fig. 5 shows the class diagram for an example of
a VE in Veha. This example comes from an application created in
Veha, but which has been greatly simplified for demonstration
purposes. The application (GASPAR, Marion et al., 2007) is made up
of around fifty classes and more than one thousand entities. This
model shows the classes Deflector and CatapultControlPod

Fig. 4. Visualisation of the instances of CatapultControlPod and Deflector.

8450 C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457
(left window). The catapult control pod shields the operators work-
ing on the catapult deck of an aircraft carrier. A pod can open (raise
above the deck) or close (drop back down into the deck). The do-
main model specifies all of the pod’s properties (height, speed,
etc.). The reactive behavior of a pod is specified by a state machine
(top right-hand window). This state machine is sensitive to the sig-
nals Open and Close. Therefore, when the pod is Closed, if it re-
ceives the signal to Open, it changes to the Open state and
performs the operation: Open (). Within the context of this appli-
cation, this operation is detailed by an OpaqueBehavior, a C++
code which carries out the visual displacement of the pod depend-
ing on the speed attribute, and updates the height attribute.

In much the same way, deflectors also react sensitively. Due to
the additional needs of this demonstration, we added a testing
operation (Test). This operation takes its settings from a catapult
control pod. The behavior of this operation is specified by an activ-
ity diagram (bottom right-hand window). Therefore, when a Test

operation is evoked in an instance of the Deflector class, the
operation sends the signal Open to the predefined pod.

This model is defined using Objecteering modeling software. It is
then exported in an XMI file. The first proposal is to add an inter-
preter to the Veha metamodel within the AReVi virtual reality plat-
form. The interpreter reads the XMI file and, for each class of Uml
metamodel, creates an instance of the corresponding class in the
Veha metamodel. Thus, for each domain class defined in the XMI
file, the interpreter creates a new instance of the class class from
the Veha metamodel. In the context of our example, an instance of
the Class class is created for the Deflector class, and another
created for the CatapultControlPod class. The interpreter en-
ables the reification of the domain model and provides an set of
methods facilitating the introspection of this model. It is therefore
possible to ask the interpreter for the set of a class’s properties, the
signal which enables the passing from one state to another, and the
operation which will then be conducted, all independently of any
tangible object.

The VE is populated with entities; instances of the Entity class
of the Veha metamodel. From a technical standpoint, these
Fig. 3. Example of a procedure wri
instances are defined in an XML file. Using Uml, class instances
can also be described and exported in the XMI file. However, no
Uml modeler can make it simple to attribute a geometry and a po-
sition to these instances. The geometric design of the VE is, in gen-
eral, the result of specialist modelers such as 3DS MAX or Blender.
We therefore suggest using an export plugin for 3DS Max which
would generate the instance file read by the interpreter. Fig. 4
show the visual result of the file defining the model (XMI) and
the instance file (XML) in an application implemented using ARéVi.
The interpreter also provides the methods for interrogating and
manipulating the entities. It is therefore possible to ask an entity
for its property values, to carry out an operation, or to send it a sig-
nal in order to change its state.

4.3. Procedure and collaboration

Here we shall examine the acquisition of skills. The domain
model not only contains knowledge about the environment in
use, but also knowledge about the task which must be performed
within that environment by the learners. Within this context,
activities are defined by the procedures describing the Actions
to be performed by a number of entities, each with specifically de-
fined roles. The procedures are therefore defined by UML activity
diagrams. This kind of diagram uses the traditional possibilities
for organizing its Actions (parallelism, sequence, junction,
tten using an activity diagram.

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8451
condition, etc.) As we are dealing with representing human activ-
ity, we consider that the sequence of activities takes place in an
asynchronous manner.

The organization roles are represented by activity corridors. The
name of the corridor defines its role and its type, as well as the type
of agent that is authorized to take this role. As in Uml 2.1, there are
many different types of activity. This could be the execution of an
agent’s operations, a basic virtual action (playing an animation,
reaching a given position, etc.) or sending a signal to a specific re-
source. The resources are played by the environment’s entities and
represented by objects in Uml. The conditions are expressed in Ocl

and stem from the roles and resources participating in the proce-
dure. Fig. 3 illustrates the example of a procedure expressed using
an activity diagram. This procedure solicits the intervention of
three roles (such as CabinOperator) which must be played by
characters of a pre-defined type (PEH for example). The characters
which play these roles are those which are effectively instantiated
in the environment. This procedure aims to make the airplane
which is to be catapulted advance towards a given point by manip-
ulating the deflector (a protective plate). The example of the proce-
dure in Fig. 3 illustrates the complementary nature of the state
machines used to define the reactive behavior of the objects in
the environment and the activity diagrams defining a procedure.
A procedure’s action can be represented by sending an event to a
given object to be manipulated, and the conditions of moving onto
the following action can depend on the current state of the object.

We implemented agents’ behaviors using knowledge about the
procedures to select their actions. The learner plays one or more
roles in the context of these procedures. The ITS also draws on this
knowledge in order to choose which assistance to suggest. As for
the environment, there are two levels of modeling available to
the agents (including the ITS) and the users (instructors): the orga-
nizational structure and the organisational instances. The intelli-
gent tutor is therefore able to recognize the sequence of actions
independently of all organization. It can also follow the precise
progress of the procedure being carried out in the team in which
the learner plays one or more roles. It is therefore able to detect
the learner’s errors regarding the order of the actions to be com-
pleted and the respect for the conditions defined in the procedure
(Trinh, Buche, Querrec, & Tisseau, 2009).
5. Pedagogical model

Knowledge about the environment (the entities and about the
task to be performed) are represented with the Veha model. Our
ITS can thus manipulate them in order to construct its own knowl-
edge, as shown in Section 5.1, and can simulate pedagogical rea-
soning (Section 5.2). Finally, a tangible implementation of the ITS
is proposed in Section 5.3 (specification of the rules of simulated
pedagogical reasoning).
5.1. Pedagogical situation

It must here be emphasized that our work takes place within
the context of in situ learning. Within this theoretical framework,
the contextual elements are paramount in the ITS’s decision-
making (Pomerol & Brézillon, 2001; Turner, 1993). In our case,
we refer to context as the pedagogical situation which serves as
a basis for decision-making. The aim is to define a context such
as this from a ‘‘generic’’ standpoint, which would enable us to alter
information without having to take into account the specific task
being carried out. In order to do this, we must separate knowledge
on the task to be performed (see Section 5.1.1) from knowledge
about the learner (see Section 5.1.2).
5.1.1. Information concerning the task to be performed
We positioned our work within the context of training for pro-

cedural work. The aim of the ITS is to assist the learner in his/her
progression through the procedure.

First of all, we can consider the procedure as a sequence of ac-
tions defined by an expert. The elements to be considered are
therefore subject to sequencing which cannot be questioned, and
sometimes cannot be explained. Secondly, we think that memori-
zation of the sequence of actions could be facilitated through
understanding. In this context Richard (1990) suggests adding
the notion of sub-objectives to the procedure. To meet this aim,
i.e. the completion of the procedure, an set of causally linked
sub-objectives must be conducted. The procedure must therefore
be studied taking into the account the distance to the procedure’s
goal from a causal, rather than a chronological standpoint.

The above analysis thus highlights two ways of dealing with
procedural learning: the study of the domain sequencing links
which are strongly linked to the roles in the procedure, and the
study of causal links between sub-objectives:

1. Sequencing links
Sequencing links conduct the relationships between the actions
using the strict description of the procedure. They are the direct
consequence of the sequencing of actions as defined by the
expert. We are interested in the information linked to the
actions closest to the action requested by the learner. More
precisely:
� the last correct action completed before that which the lear-

ner has just solicited;
� the action which has just been solicited by the learner;
� the correct actions to be carried out, taking into account the

role(s) to be played (which are potentially different to the
solicited action);

� the correct actions to be performed, when considering that
all roles are played by the learner;

� those actions following all the correct actions.
We chose the actions closest to that which is solicited in order
to try to reduce the ‘‘distance’’ between the goal (the end of the
procedure) and the learner’s location in the procedure. Techni-
cally, this is done by carrying out plan recognition based on the
Veha activity diagram shown in Section 4.3. The pedagogical
situation thus retains the knowledge linked to the actions that
are chronologically close to that which is requested.

2. Causal links between sub-objectives
The procedure can be considered like a graph representing the
sequence of causal sub-objectives. We therefore contemplate
all of the actions linked to that which the learner is performing.
In concrete terms, this means the actions requiring the effect of
the correct desired action (usage conditions, state of a resource,
etc.). A distinction must be made between these links, which
correspond to individual logic, and sequencing, whose links cor-
respond to the organization of a collective procedure. Techni-
cally, we are dealing with the links between post-conditions
and pre-conditions as mentioned in Section 4.1.3.

It must be stressed that our objective here is to extract knowl-
edge relating to the work to be carried out in order to assist peda-
gogical decision-making. Within this context, we shall consider the
knowledge detailed in Table 2. All the actions which have been
identified up to this point (sequential and causal links) make up
the pedagogical situation. More specifically, we are interested in
the information that relates to the selected actions. At this point,
we must specify the knowledge relating to the concept of action.
From this perspective, the ‘‘action context’’ is made up of knowl-
edge that is directly linked to the Action (description, resources,
etc.), knowledge relating to the Operation, which is the target

Table 2
The pedagogical situation: knowledge about the task to be performed.

Knowledge Nature Description

r Context of the previous
action

Sequential The last correct action to have
been performed. This action
serves as a point of reference from
which one can position oneself in
the procedure

s Context of the requested
action

Sequential The requested action. This action
could be correct or incorrect. The
action has not necessarily been
performed, in accordance with the
pedagogical model

t Context of the correct
action(s) without
considering their roles

Sequential In considering the last correct
action, we can determine the
actions to be performed within
the context of the current
procedure

u Context of the correct
action(s)

Sequential A sub-group of the previous item
which does not take the roles
played by the learner into account

v Context of the following
action(s)

Sequential For each correct action, we
determine the actions which
follow it according to the current
procedure

w Context of related
action(s)

Causal In considering the actions to be
performed following the last
correct action, we retrieve the
‘‘causal’’ links between the actions
independently of the procedure.
We therefore obtain the actions
which are related

8452 C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457
of the Action, as well as knowledge relating to the agent that has
requested the action, as that agent is the central character. We
therefore use action contexts in order to represent the knowledge
associated with particular actions (a sub-group of the environment
made up of the entities and agents considered relevant in the con-
text of the action).

It is the responsibility of the pedagogical agent to construct this
set of knowledge. The pedagogical agent retrieves or constructs the
knowledge required about the task to be performed when it re-
ceives a message from the interface agent detailing an action
which has been requested. This choice is be debatable and indeed
another possible solution is to update the knowledge when an
error occurs. We chose to reconstruct the knowledge of the actions
in order to retain the option to intervene, even if the learner’s
actions are correct. This means that we can provide pedagogical
assistance in order to reassure the learner about the decisions that
they make, or inversely to imply doubt if it looks like they are
about to make a mistake (example: confirm false rules which
contradict the choices the learner has made).
5.1.2. Information concerning the learner
The information about the learner comes from a number of

sources, but are all collected by the learner model. This information
relates both to static data (such as age) and dynamic data (such as
elements of memory at a given time).

It must be noted that the learner’s errors are recorded and are
analyzed. Our error model is based on the Cognitive Reliability
and Error Analysis Method (CREAM). This approach proposed a
classification scheme which makes a distinction between observa-
tions of errors (phenotypes) and its causes (genotypes). The causal
links between phenotype-genotype are represented using a num-
ber of consequent-antecedent links. Finally, the scheme could be
associated with a method of retrospective analysis (the search for
causes). The most probable cause-effect links is found using Demp-
ster-Shafer’s theory presented in El-Kechaï and Després (2006).
In much the same way, the contexts relating to the actions are
also recorded. This information allows us to see whether or not
learner has already used a particular resource, for example.

In concrete terms, we have just defined the input information
and the pertinent elements from which pedagogical decisions
can be made.
5.2. The pedagogical agent

The pedagogical situation (Section 5.1) gives us the option of
triggering pedagogical assistance relating to the elements detailed
within it. It thus provides the possible outcomes of the pedagogical
decision-making process. We shall now go onto define a model for
simulating the behavioral decision-making of the pedagogical
agent providing instructive assistance, that is to say, a model link-
ing knowledge and the proposed assistance. It must be noted that
we are working within the context of learning procedural and col-
laborative tasks. We must therefore consider:

� The atypical nature of the knowledge involved (knowledge
stemming from basic pedagogical methods to virtual reality).
� Adaptability (the agent’s reasoning processes must auto-adapt

in order to take past experience into account).
� This reasoning must be specified prior to the event (initial spec-

ifications can therefore be made by an instructor).

The criteria which arise from these considerations are as fol-
lows: expressiveness, hierarchy, modularity, reactivity and adapt-
ability. After having examined the existing families of behavioral
architecture (connectionist, automata-based, rule-based), we
opted for the rule-based families (Goran & Vladan, 2003) which
best respond to the criteria outlined above. More precisely, we
chose classifier systems (Sigaud & Wilson, 2007). This is a reactive
and adaptive form of architecture, based on conditional rules.

We propose the use of a model based on a hierarchical classifier
system. This system organizes knowledge while taking into ac-
count the abstraction of the data involved. It structures knowledge
according to three levels, from rules based on abstract knowledge
of educational methods (the pedagogical approach), to the rules
based on concrete knowledge of virtual reality (pedagogical tech-
niques), via an intermediary level (pedagogical attributes).

Each level of abstraction contains sets which group together a
number of rules. One set represents a way of dealing with a partic-
ular approach, attitude or pedagogical technique. The rules are
conditioned by the elements of the pedagogical situation, and favor
the sets from the lower level. The system therefore uses a diffusion
mechanism in all three levels which considers the rules matching
the pedagogical situation. This gives rise to a list which then
arranges the different suggestions for pedagogical assistance.

Fig. 9 illustrates the structure and the dynamics of the pedagog-
ical model controlling the pedagogical agent’s behavior. The infor-
mation taken into account in the conditional part of the rules are
retrieved by our ITS (pedagogical situation). These ‘‘inputs’’ are
available at the three levels of data abstraction (approach, attitudes
and pedagogical techniques). The rules whose conditional ele-
ments are satisfied in terms of input favor some of the sets of ped-
agogical rules from the lower level. The upper level (techniques),
directly favors those pedagogical suggestions which can be applied
within the environment. These suggestions are made to the
instructor who chooses that which they consider to be the most
relevant.

Simulating pedagogical reasoning has two advantages:

1. As instructors are not always teachers, they too are being given
pedagogical assistance.

Fig. 5. Class diagram for a deflector and a catapult control pod.

Fig. 6. Class diagram from the Veha metamodel: Behavior::Common package, the BehaviorExecution class.

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8453
2. The instructors are not simulation software experts, so the ped-
agogical agent will offer assistance to the learner who will have
the opportunity to make the most of the VE.

5.3. Specifications of the pedagogical model

In order to implement the pedagogical model, the teacher must
specify:

1. The sets of rules for the three levels of abstraction.
2. The pedagogical rules for each of the sets of rules.

Here, we will discuss information from the literature which can
be used when specifying the pedagogical model.

5.3.1. Specifying the sets of pedagogical rules
We worked from the studies by Lourdeaux et al. (2002) in order

to define the sets of pedagogical rules. We obtained the following
Tables 3–5 corresponding to the three levels; approaches, attitudes
and techniques, respectively. This information represents the
opportunity to specify sets of rules at each of the three levels
(see Fig. 10).
5.3.2. Specifying the pedagogical rules
Once the sets of pedagogical rules are defined, the teacher must

specify the associated rules.
A rule is represented by a sequence of characters. The effect and

condition parts are based on the elements of the pedagogical
situation.

In the following example, we position ourselves at the Pedagog-
ical Methods abstraction level, with an set of rules called Active. A
first rule for this set is fulfilled is the learner is a novice
(Learner.Level==novice), if they have performed an organiza-
tion error (Learner.Error.type==procedural) and if the action
performed is different from the correct action (!Task.Requeste-

Fig. 7. Class diagram from the Veha metamodel: EntityClass.

Fig. 8. Class diagram from the Veha metamodel: Features of a Classifier.

8454 C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457
dAction in Task.CorrectActions). In this case, the rule favors
the Explain set from the following level.

if (Learner.Level == novice && Learner.Error.type==

procedural && ! Task.RequestedAction in Task.

CorrectActions)

then (Explain)

5.3.3. Use
A specific pedagogical model was created from the structure de-

scribed above, and from the papers by Lourdeaux et al. (2002).
These sets are described in Fig. 10, with each set containing an
average of five rules. This pedagogical model was applied to two
distinct VEs designed for learning collaborative procedures. No
modification of the pedagogical model (sets and rules) is required
for either of these applications, which are very different, but which
are both based on the same kind of learning. However, we believe
that these changes would only need to be made at the intermediate
level. For other types of learning (for example for a scientific prac-
tical), these rules would probably need to be changed.

5.4. Artificial learning

Thanks to artificial learning, the weight of the rules can be re-
fined for adapting to the instructor’s preferences.

The learning algorithm is inspired by the Bucket Brigade
(Holland, 1986; Wilson, 1987). This system distributes remunera-
tions to the rules which enabled them to be obtained. It is adapted
to classifier systems (Sigaud & Wilson, 2007) with a list of rules
which, when followed one after the other, lead to an action. In
our case, this sequence of events corresponds to the passing from
one level to another. Remuneration is reflected by the instructor’s
choice: the pedagogical technique which they choose defines the
rules in the third level which will be compensated. By back-chain-
ing, the rules in levels one and two are also compensated. The
weights of the rules which match the pedagogical situation, but
which participate in activating a technique other than that chosen
by the instructor will decrease. The algorithm shares out the remu-
neration, including a tax which means that the rules which rarely
match are not put at a disadvantage, and that the strong rules are
penalized in order to retain the adaptive nature of the system.

Therefore, as the exercises progress, the pedagogical agent must
make suggestions which correspond more and more closely to the
instructor’s decisions. The pedagogical agent could therefore tem-
porarily take over and directly apply the assistance that it has cho-
sen itself, should there be more than one learner at a time.
6. Discussion

Before concluding, we would like to discuss the benefits of our
proposal. The study put forward in this article begins by a examin-
ing previous studies in this field and analyzing the uses of
pre-existing ITS within VLE. We then went onto show that the HAL

system is the most successful, and underlined the elements which
could be improved. Indeed, in this system, the pedagogical model
depends partly on the exercise, and the errors and pedagogical
strategies must be defined. Furthermore, the instructor can only
choose between two pedagogical methods (active or explanatory).
We believe that it is possible to resolve the pedagogical model’s
problems of genericity and modularity.

Without re-examining every element of our work, we can show
how our proposal could solve some of the difficulties of existing
models. The knowledge used for pedagogical reasoning does not

Fig. 9. Complete representation of the pedagogical model.

Table 3
Examples of set definitions for the ‘‘pedagogical approach’’ level of abstraction based on (Lourdeaux et al., 2002).

Pedagogical approach Description

Active/constructivist An active approach is learner-centered, considering him/her the main actor in the learning process. This approach suggests techniques
through which they can produce, create and search. The knowledge required can be found in the environment

Expositive/affirmative This is the most traditional approach which uses the display technique. It is based on a content-transfer approach. Knowledge is external
Interrogative This approach makes recommendations to the learner, guiding him/her towards the desired outcome. Learners may have the impression

that they have discovered something new, but it is the instructor who will have guided the thought process. Knowledge is internal

Table 4
Examples of set definitions for the ‘‘pedagogical attitudes’’ level of abstraction based on (Lourdeaux et al., 2002).

Pedagogical attitudes Description

Perform Perform the task in the place of the learner. This strategy can be used by the instructor to show the learner the correct technique or move
Disruption Some instructors tease and disrupt the learners by giving them incorrect information or potentially incorrect solutions in order to test

the learners’ conviction of their ability to reason independently
Suggest Showing where the learners can find theoretical information or where to find information within the environment. These attitudes allow

the instructor to show the learners that they can find the required information independently and therefore deal with the situation in a
calm manner

Independent learning This attitude encourages the instructor to remain in the background as an observer rather than to intervene
Explain The explanations and information are also designed, quite simply, to explain the functioning of certain devices, rules of analysis, safety

rules, etc.
Encourage Encouraging the learners when they perform a task correctly

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8455

Table 5
Examples of set definitions for the ‘‘pedagogical techniques’’ level of abstraction based on (Lourdeaux et al., 2002).

Pedagogical techniques Description

Improvement Addition of visual and audio symbols or animated films
Deterioration Unrealistic images (erased points of reference, feed-back, proprioceptifs dégradés, altered colors, blurred background/surround,

reduction of objects, iconization, etc.)
Upscaling Exageration of reality (representing objects on a larger scale, surreal, brighter or shinier objects, etc.)
Simplification Simplification of the virtual scene (a crowd can be represented by people with simplified movements, simplified objects, simplified

kinetic systems, wireframe images, etc.), schematic representations of certain devices
Restriction Limitation of certain movements or actions (limiting the area within which the learner can move around, etc.)
Animation Animated sequence (automatic positioning, keys which turn automatically once in place, etc.)
Perspective Altering the learner’s normal viewpoint (view from behind, above, etc.)
Modification Changes in appearance and texture (colors, flickering objects, etc.)
Modeling The representation of abstract concepts, of physical phenomena invisible to the naked eye, types of errors, etc.
Visualisation Hidden mechanisms (the inside of a motor, gears, etc.)

Fig. 10. Specifying the three levels of the pedagogical decision-making model.

8456 C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457
depend on the specifics of the task to be performed. Therefore ped-
agogical rules do not and indeed do not need to consider specific
information, (‘‘if the learner can see aeroplane 2 then. . .’’), but will
rather use general knowledge independently of the exercise (‘‘if
the resources of the correct actions are visible, then. . .’’). In much
the same way, although the pedagogical assistance proposes tangi-
ble solutions to the instructor (’’make the fireman flicker’’), generic
knowledge is also manipulated independently of the exercise
(’’make the characters involved in the following actions flicker’’).
Thus, the genericity of our proposal is one of its strongest charac-
teristics, as illustrated by the inclusion of our ITS at the heart of
numerous applications: the learning of collaborative procedures
on aircraft carriers (GASPAR) (Marion et al., 2007) and for firemen
intervening in Seveso areas (SÉCURÉVI) (Querrec, Buche, Maffre, &
Chevaillier, 2004). In addition, the pedagogical model of our ITS
has strong modularity, as it offers the option of adding, deleting
or modifying each of its components that participates in pedagog-
ical decision making (rules or sets of rules). Moreover, the artificial
learning mechanism adapts the proposed pedagogical assistance to
the learner-instructor pair. Therefore, our proposition offers solu-
tions to the problems raised in our introduction. Finally, it must
be emphasized that PEGASE is directly based on the learner-instruc-
tor relationship.

However, we must not forget that there will undoubtedly be
limitations linked to the use of our ITS in the context of non-proce-
dural learning. To be able to deal with this kind of training, we

C. Buche, R. Querrec / Expert Systems with Applications 38 (2011) 8446–8457 8457
would have to rethink the elements which are so strongly linked to
the notion of procedure, i.e. knowledge of the pedagogical
situation.

References

Amokrane, K., Lourdeaux, D., & Burkhardt, J. (2008). Hera: Learner tracking in a
virtual environment. IJVR: International Journal of Virtual Reality, 7(3),
23–30.

Edward, L., Lourdeaux, D., Lenne, D., Barthes, J., & Burkhardt, J. (2008). Modelling
autonomous virtual agent behaviours in a virtual environment for risk. IJVR:
International Journal of Virtual Reality, 7(3), 13–22.

El-Kechaï, N., & Després, C. (2006). A plan recognition process, based on a task
model, for detecting learner’s erroneous actions. In Intelligent tutoring systems
(pp. 329–338).

Goran, S., & Vladan, D. (2003). Building an intelligent system using modern internet
technologies. Expert Systems with Application, 25(1), 211–230.

Herviou, D., & Maisel, E. (2006). ARéViRoad: A virtual reality tool for traffic
simulation. In Proceedings of urban transport (pp. 297–306).

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J.
G. Carbonell, & T. M. Mitchell (Eds.). Machine learning: An artificial intelligence
approach (Vol. 2, pp. 593–623). Los Altos, CA: Kaufmann.

Hubal, R. (2008). Embodied tutors for interaction skills simulation training. IJVR:
International Journal of Virtual Reality, 7(1), 1–8.

Kallmann, M., & Thalmann, D. (1998). Modeling objects for interaction tasks. In
Proceedings of computer animation and simulation’98 (pp. 73–86).

Keles, A., Ocak, R., Keles, A., & Gülcü, A. (2009). ZOSMAT: Web-based intelligent
tutoring system for teaching-learning process. Expert Systems with Application,
36(2), 1229–1239.

Levesque, P. (2003). Creation and use of 3d as-built models at EDF. In FIG working
week 2003.

Lourdeaux, D., Burkhardt, J., Bernard, F., & Fuchs, P. (2002). Relevance of an
intelligent agent for virtual reality training. International Journal of Continuous
Engineering and Life-long Learning, 12(1/2/3/4), 131–143.

Marion, N., Septseault, C., Boudinot, A., & Querrec, R. (2007). Gaspar: Aviation
management on an aircraft carrier using virtual reality. In Cyberworlds 2007
proceedings (pp. 15–22).

Pomerol, J., & Brézillon, P. (2001). About some relationships between knowledge
and context. In V. Akman, P. Bouquet, R. Thomason, & R. A. Young (Eds.),
Modeling and using context: Third international and interdisciplinary conference,
context 2001 (pp. 461–464). Berlin: Springer-Verlag.

Querrec, R., Buche, C., Maffre, E., & Chevaillier, P. (2004). Multiagents systems for
virtual environment for training. Application to fire-fighting. International
Journal of Computers and Applications (IJCA), 1(1), 25–34 [Special issue
‘‘Advanced technology for learning’’].

Richard, J. F. (1990). Les activités mentales: Comprendre, Raisonner, Trouver des
solutions. Paris: Armand Colin. ISBN: 2-200-2187-0.

Rickel, J., & Johnson, W. L. (1999). Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence, 13.

Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to
2005. Expert Systems with Application, 33(1), 135–146.

Sigaud, O., & Wilson, S. W. (2007). Learning classifier systems: A survey. Journal of
Soft Computing, 11(11), 1065–1078.

Trinh, T., Buche, C., Querrec, R., & Tisseau, J. (2009). Modeling of errors realized by a
human learner in virtual environment for training. International Journal of
Computers, Communications and Control, IV(1), 73–81.

Turner, R. M. (1993). Context-sensitive reasoning for autonomous agents and
cooperative distributed problem solving. In Proceedings of the IJCAI workshop on
using knowledge in its context (pp. 141–151).

Wang, H. (1997). LearnOOP: An active agent-based educational system. Expert
Systems with Application, 12(2), 153–162.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, California:
Morgan Kaufmann.

Wilson, S. W. (1987). Hierarchical credit allocation in a classifier system. In Tenth
international joint conferences on artificial intelligence (IJCAI’87), Milan, Italy (pp.
217–220).

	An expert system manipulating knowledge to help human learners into virtual environment
	Introduction
	Context: acquisition of skills using virtual environments
	Proposing an intelligent tutoring system: Pegase
	Domain model
	The Veha metamodel
	Domain concepts
	The possibility of structuring and interacting with the environment
	Entities’ behaviors

	Example of an environment in Veha
	Procedure and collaboration

	Pedagogical model
	Pedagogical situation
	Information concerning the task to be performed
	Information concerning the learner

	The pedagogical agent
	Specifications of the pedagogical model
	Specifying the sets of pedagogical rules
	Specifying the pedagogical rules
	Use

	Artificial learning

	Discussion
	References

