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Abstract

This article deals with artificial intelligence models inspired from cognitive sci-
ence. The scope of this paper is the simulation of the decision-making process
for virtual entities. The theoretical framework consists of concepts from the use
of internal behavioral simulation for human decision-making. Inspired from such
cognitive concepts, the contribution consists in a computational framework that
enables a virtual entity to possess an autonomous world of simulation within
the simulation. It can simulate itself (using its own model of behavior) and
simulate its environment (using its representation of other entities). The entity
has the ability to anticipate using internal simulations, in complex environments
where it would be extremely difficult to use formal proof methods. Comparing
the prediction and the original simulation, its predictive models are improved
through a learning process. Illustrations of this model are provided through two
implementations. First illustration is an example showing a shepherd, his herd
and dogs. The dog simulates the sheep’s behavior in order to make predictions
testing different strategies. Second, an artificial 3D juggler plays in interac-
tion with virtual jugglers, humans and robots. For this application, the juggler
predicts the behavior of balls in the air and uses prediction to coordinate its
behavior in order to juggle.
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1. Introduction

For many years, researchers have tended to create virtual environments that
provide the opportunity for a human to evolve while interacting with virtual
entities. For these virtual worlds to be believable, each entity controlled by
the computer must exhibit a behavior giving the illusion of being controlled
by another human. This raises the following question: how can an entity be
equipped with believable autonomous behavior in a complex virtual environment
in which humans participate?

Traditional symbolic artificial intelligence techniques have been applied to
define these behaviors. However, these techniques have limitations as they are
mainly based on predetermined rules of behavior chosen by the designer. Indeed,
in complex (open simulation, heterogeneous and participatory) virtual worlds,
entities may have unpredictable behavior (behavioral variability of autonomous
entities, free will of human users), thus creating new situations. When faced
with situations unforeseen by the programmer, entities may display unsuitable
behaviors.

In this paper, virtual entities are considered at the same level as human, by
integrating human characteristics that are currently lacking in existing artificial
intelligence mechanisms. To address this issue, we were inspired by ideas and
concepts from cognitive science in defining human decision-making. More pre-
cisely, our focus is on finding a computational approach to reproduce adaptive
behavior in an intelligent agent, inspired from the human’s anticipation ability
and capacity to adapt while interacting. We will then be able to examine the
use of such concepts into an artificial entity’s decision-making process.

This paper is organized as follows. After presenting the concepts from cogni-
tive science which highlight simulation as being an essential aspect of cognition
and from which the presented approach is inspired, section 2 analyzes related
works in computational models. Although studies from cognitive science sug-
gest that mental simulation is central to decision making and arguably other
important aspects of reasoning, existing approaches do not offer a generic com-
putational model of this paradigm.

To address this issue, in this paper we present a generic computational model
of mental simulation. Thus section 3 describes a conceptual framework where
the entity possesses an autonomous world of simulation within the simulation.
In this internal world, the entity is able to simulate itself (using its own model
of behavior) and also simulate its environment (using its representation of other
entities). The entity also has the ability to anticipate and to learn using internal
simulations. In our previous works, the concept of internal simulation has been
studied, for test purposes, in two applications described in previous publications
(Buche et al., 2010, 2011; Buche & De Loor, 2013). These applications illus-
trated the applicability of mental simulation paradigm to decision-making, but
connections between decision/anticipation/learning were ad hoc for each specific
application and required complete architectural modifications to be applied to
a new domain.

To test the genericity of the computational model, we have reused these
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examples in section 4. The key idea is to show that it is possible, using our
architecture, to switch from one domain to the other without making changes
to processes binding decision/anticipation/learning. First, we illustrate our ap-
proach through an example that simulates dogs gathering sheep. To simulate
sheep behavior, the dog uses fuzzy cognitive maps (FCM) of prey. The dog
can therefore simulate the sheep’s motion in order to make predictions and to
test different strategies. Without changing the architecture, we illustrate our
proposal by an artificial 3D juggler playing with virtual jugglers, humans and
robots. For this application, the juggler predicts the behavior of balls in the air
and coordinates its own behavior accordingly, in order to juggle. The virtual
juggler uses neural networks to simulate ball motion. The proposed architec-
ture allows the agent to adapt to changes introduced by adding other agents and
human users to launch balls that the virtual juggler can catch while juggling,
which was not the case in the original application described in (Buche & De
Loor, 2013). Without changing the architecture, we were able to switch from
FCMs to neural networks as a controller for the prediction process. Finally,
section 5 concludes and introduces future work.

2. Context

2.1. Cognitive Science toward Artificial Intelligence

There is a growing body of literature in cognitive science advocating the sim-
ulation process as being central in cognition (Decety & Grèzes, 2006; Hesslow,
2002, 2012; Pezzulo et al., 2013). Contrary to the classical cognitive approach,
in these simulative theories, perceptual, cognitive and motor process are not
considered as being part of separate domains but rather that sensorimotor pro-
cesses are fundamental to cognitive activities.

Despite different views of the concept of simulation, one central common
point is that simulation corresponds to the reactivation of actions that were
formerly executed and stored in memory (Decety & Grèzes, 2006). For example,
in his simulation theory (ST), Hesslow (2012) proposed three main assumptions:
(1) simulation of action, (2) simulation of perception and (3) anticipation.

The simulation of action (1) implies that brain areas recruited when per-
forming an action are similar to the ones activated when covertly (i.e., when
the action is not executed) reactivating the action. In this way, one can con-
sider that a simulated action corresponds to an unexecuted action. The second
statement (2) means that perceptual activity may occur in absence of external
stimuli. Like during the simulation of action, activation in the brain is similar
when perceiving external information and when imaging perceiving this infor-
mation. Finally (3), Hesslow (2012) proposed the existence of some associative
mechanisms allowing both behavioral and perceptual activity that could pro-
duce activation in the sensory areas of the brain. The direct consequence is the
possibility to generate perceptual activation from simulated action similarly to
obtaining this activation from the actual execution of the real action.
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In sum, one can simulate both action and perception. When doing so, the
recruited brain areas are the same as the ones activated when actually perform-
ing the action or actually perceiving external information. Moreover, action
simulation can elicit perceptual activity similar to the one which would have
occurred if the action were actually performed. The benefit of this anticipation
mechanism is twofold. First, one can be prepared to respond to the consequence
of one’s own action. Second, one can evaluate in advance the consequence of an
action and thus select the most appropriate behavior to achieve the indented
goal (Hesslow, 2002; Pezzulo et al., 2013).

The simulation theories are not limited to studying how humans deal with
their own actions but they extend to the social domain by taking into ac-
count how individuals process other’s behavior. The proposition here is that,
when observing others acting, one would simulate oneself performing the action
(Berthoz, 1997; Jeannerod, 1994). This idea has been reinforced by the discov-
ery, in monkeys, of mirrors neurons which are sensorimotor neurons that fire
both when an action is performed and when the same action is observed to be
executed by someone else (Rizzolatti et al., 1996). Since, several observations
have supported the existence of a Mirror Neuron System in humans, with shared
neural substrates for action identification and action execution ((Rizzolatti &
Craighero., 2004) for a review).

Simulating the actions of others would contribute to understanding and an-
ticipating their consequences (Gallese & Goldman, 1998). It has also been
proposed that these simulation mechanisms would be significantly involved in
more general and higher level social cognition and possibly underlie the capac-
ity of inferring mental states of others, known as Theory of Mind (Gallese &
Goldman, 1998; Goldman, 2002). According to the simulation theory (Gold-
man, 2002, 2005), in order to attribute mental states to others we have to use
our own mental mechanisms. In other words, in order to read others’ minds, we
have to adopt their perspective.

Cognitive science research has also studied how people use simulation men-
tally represent mechanical systems Hegarty (2004) and reason about how they
evolve. Moreover, it has been suggested that there exists a common network in
the brain that is responsible for episodic memory, navigation, theory of mind
and prospection abilities in humans Buckner & Carroll (2007).

To sum up this section, several propositions in the cognitive science domain
consider simulation as a fundamental process of cognition. Through simulation,
the brain can anticipate events in the environment, either if they are a conse-
quence of its own action or another’s behavior. Thus, simulation mechanisms
allow individuals to anticipate future events, so that they can adjust to their
ever changing environment. Following this conception, the focus of our work
is to study how internal simulation can enable a virtual agent to adapt to the
dynamics of its environment.

An analysis of state of the art computational approaches to internal simu-
lation is provided in the following section. The conclusions of this study allows
us to then sketch a conceptual framework which is arguably able to encompass
the results of previous approaches and provide a more generic computational
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solution for building internal simulation based agents. For clarity and tractabil-
ity, the test scenarios used in this work are considerably simpler than real world
human abilities such as reasoning about other people’s beliefs and desires, but
still preserve highly dynamic behavior, where we evaluate our agents’ ability to
adapt.

2.2. Computer Science Related Works

Computational applications of mental simulation are relatively recent and
limited to specific scenarios. Results have been obtained by complementing
existing systems with prediction and viewpoint adoption capabilities in contexts
such as navigation (Bongard et al., 2006; Kennedy et al., 2009; Svensson et al.,
2009), sensory integration (Cassimatis et al., 2004), object manipulation (Roy
et al., 2004; Kunze et al., 2011), human-agent interaction (Buchsbaum et al.,
2005; Breazeal et al., 2009) and goal recognition (Rao et al., 2004; Gray &
Breazeal, 2005), which indicate that mental simulation is advantageous over
traditional techniques in these chosen scenarios.

In Polceanu & Buche (2013a), we have examined related works in various
contexts of using mental simulation for decision-making. Two main directions
that can be distinguished in simulation-based approaches to artificial decision-
making, anticipation and learning (cf table 1):

1. behavioral internal simulation : predict the consequences of actions on
behavior to infer knowledge about others

2. environmental internal simulation : predict the consequences of actions on
the physical environment (for example, in the case of a domino scenario,
the use of mental simulation would allow the agent to anticipate different
sequences of falling pieces)

Taken together, these existing approaches cover all areas of interest in using
mental simulation as an anticipation and decision-making technique, however
there exists no implementation that addresses all of them on its own. The
majority of implementations have begun in virtual reality (Kunze et al., 2011;
Polceanu & Buche, 2013b; Svensson et al., 2009; Buche & De Loor, 2013), but
fewer have taken the leap to robotic embodiments due to dependencies on spe-
cific information about their environment. Those that do however pass into the
real world (Roy et al., 2004; Kober et al., 2012; Cassimatis et al., 2004) are
either limited in the actions they can perform or rely heavily on repositories of
actions that are abstracted for the use within a higher-level framework.

Focus is placed on solving only a subset of the cognitive functions associated
with mental simulation, and this is done using specific models of the task at
hand. Hence, not many elements are taken into account into mental simulation,
for example anticipating trajectories but not collisions (Cassimatis et al., 2004;
Breazeal et al., 2009; Ustun & Smith, 2008; Kennedy et al., 2008, 2009; Svensson
et al., 2009), or focusing on only one of the environmental and behavioral aspects
of the environment, although they are generally interdependent.

To conclude, current approaches are constrained to function in relatively
specific setups, far away from a generic perspective. Although approaches exist
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Computational models objectives References

1 - Behavioral Internal Simulation
1.1 - Imitation of Kin

- Intention recognition (Buchsbaum et al., 2005; Gray &
Breazeal, 2005; Breazeal et al.,
2009)

- Learning novelty (Buchsbaum et al., 2005; Costa &
Botelho, 2013)

1.2 - Representation of Others
- Predicting behavior (Ustun & Smith, 2008; Laird, 2001;

Roy et al., 2004)
- Collaboration (Kennedy et al., 2008; Roy et al.,

2004; Kennedy et al., 2009; Han-
ratty et al., 2007)

- The self (Kunze et al., 2011; Bongard et al.,
2006; Dautenhahn & Nehaniv,
2002; Alissandrakis et al., 2002;
Gray & Breazeal, 2005; Roy et al.,
2004; Kennedy et al., 2008, 2009)

2 - Environmental Internal Simulation
2.1 - Virtual environment (Kunze et al., 2011; Polceanu &

Buche, 2013b; Svensson et al.,
2009; Buche & De Loor, 2013)

2.2 - Real environment (Roy et al., 2004; Kober et al.,
2012; Cassimatis et al., 2004)

Table 1: Our analysis of the existing computational models.
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that function in real time, online learning is used only for specific tasks. The
mechanism of the simulation paradigm, such as continuous imagination-reality
comparison in complex environments and imaginative behavior, are not yet fully
exploited.

To overcome these shortcomings, in the next section we present a generic
framework to model virtual entities that are able to use internal simulation
paradigm to anticipate, learn, take decisions and act in dynamic environments
where the agent’s actions can be influenced or interrupted by other agents or
humans.

3. Proposal

Our proposal is based on the theory of internal simulation. The idea is to
use this concept as the mechanism to control a virtual entity with the ability
to predict and learn. In this section, we first propose a generic framework to
model virtual entities (section 3.1). Constraints and methods regarding the
implementation will be discussed afterwards (section 3.2).

3.1. Generic Framework

Following the reasoning expressed in previous sections, we represent three
modes to model virtual actor, as follows:

1. Reactive mode evolving in the virtual world (section 3.1.1);

2. Prediction mode evolving in the imaginary world (section 3.1.2);

3. Learning mode evolving in the abstract world (section 3.1.3).

3.1.1. Virtual World

A virtual world is a classical simulation with autonomous entities evolving
in interaction. A virtual actor is an agent with sensors for perceiving, effectors
for acting and a behavioral model to perform decision-making.

3.1.2. Imaginary World

While acting within the virtual world, each entity can make predictions in its
imaginary world. This process consists in simulating the entity’s own behavior
(with its own behavioral model), and that of the environment it inhabits (using
the representation that it has of the behavior of other entities). This simulation
occurs a phase ahead of the original simulation, enabling the entities to make
predictions. This imaginary space, unique to each entity, functions in parallel
with its activity within the virtual world, asynchronously so as not to block the
behavioral animation. This imaginary world is a universe of simulation within
the simulation (figure 1).
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Figure 1: The simulation within simulation process : the entity (left) anticipates the behavior
of the other entities (right). It possesses an imaginary world in which it “imagines” what it
going to happen.

3.1.3. Abstract World

Prediction in the imaginary world implies a representation of the external
world and of its dynamic. To obtain this representation can be a hard challenge
because a world adapted to this approach is open: unpredictable interactions
can appear at any time and thus the dynamic properties can be disturbed. So,
learning mechanisms are a good way to learn the dynamics of the world. In
our proposal, predictions in the imaginary world are improved by observing the
virtual world online. The virtual actor will then modify its representations of
other entities using a learning mechanism. It must be noted that this observed
world can also be populated with other actors, or with human-controlled avatars
(Stoffregen et al., 1999). Similarly, for the approach to be generic, it is impor-
tant for the control of the behavioral model to be independent of the learning
mechanism, so that the model might be piloted by any decisional mechanism.
The development of learning adds an entirely new dimension to our model.

3.1.4. Dynamics

In the examples given within this work, virtual entities evolve in a virtual
world (first dimension: the virtual world), simulate the representation of be-
haviors in an imaginary world (second dimension: the imaginary world), and
adapt the representation of behaviors through learning (third dimension: the
abstract world). The challenge here is therefore to identify the three dimen-
sions and to understand their interactions (figure 2). The three worlds evolve
in parallel and correspond to three different levels of abstraction. Nevertheless,
they are all related and share information. The virtual world provides the nec-
essary information to the imaginary world in order to simulate an approximate
representation of the virtual world. Furthermore, it provides the abstract world
with data for adapting its models. The imaginary world feeds back information,
particularly concerning the choice of strategies or predictions.
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Figure 2: Representation of the entities’ three dimensions : the real world (reactivity mode),
the imaginary world (predictability mode) and the abstract world (adaptability mode). The
three modes can function asynchronously in parallel.
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3.2. Implementation

The implementation we propose is sequenced in three steps: (1) observation
(2) prediction and (3) learning. Each step is described in the following.

3.2.1. Steps

Step 1: Observation (Models Choice and Estimation).

• Models Choice. In most cases of complex dynamic environments, it
is not possible to predict all behaviors using only one prediction model.
Therefore the question arises of which model is most fit in a given situa-
tion. The most common approaches involve an expert who, based on his or
her past experience regarding a given problem, can suggest a most likely to
succeed solution. However, this type of approach requires the intervention
of the human expert when entirely new scenarios arise. To overcome the
need for external intervention in model selection, the agent will require
to test the prediction accuracy of several models, and choose the most
efficient one. In the context of simulation in the simulation paradigm, this
model selection is possible due the constant feedback received by the agent
from its environment. Having a repository of general behavior models can
allow the agent to select different methods for describing each behavior
observed in its environment. Thus, we consider the agent has a library of
prototypic behaviors models. This library represents the agent’s behav-
ioral culture (Mataric, 2002). For example an animal’s library is made up
of the prototypic behavior of both predator and prey.

• Estimation. The agent estimates model-sensors and model-effectors through
observation. We make the assumption that these features are available.

Step 2 : Prediction (Simulating behavior). The agent imagines its own behavior
by simulating its own decisional mechanisms and imagines the behavior of the
other actors using prototypic behavior models.

Step 3 : Learning (Models reconsiderations). The aim is to provide the ability
for the agent to adapt its representation of other actors’ behavior. This learning
is done using the comparison between the simulation model (imaginary world)
and the observation of reality (virtual world).

3.2.2. Technical Considerations

Achieving a functional instance of an agent capable of imagining the effects
of its actions in the world, and possible outcomes of complex situations, poses
a set of technical challenges. The real-time autonomous nature of this agent,
raises the question of execution speed, as the agent must be able to retrieve
the state of the world at any given moment and extract knowledge from this
information, to be used within the higher levels of abstraction. In the scenario
where the agent interfaces with the real world, the difficulty of this task greatly
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increases, as computer vision, natural language processing and other interface
related aspects still pose a challenge to researchers and developers.

The agent can then create multiple simulations, different versions of real-
ity, through which predictions can be made and solutions to problems can be
found. Based on these predictions, the agent can make decisions on how to act,
or it can gain novel knowledge about the environment and other inhabitants.
Considering that many simulations may be required, a parallel architecture is
the key approach, so that multiple possibilities can be tested simultaneously,
without great performance overhead. Aiming for a network-based architecture
which would allow the agent to run simulations on multiple machines would be
preferred in this case.

When complexity increases, a complete simulation of the environment might
not prove to be efficient, therefore an attention mechanism must be put in place
to select relevant aspects that require prediction. Moreover, as the simulation
happens, events may happen in the real world, and therefore the simulation
should be resynchronized.

Depending on the speed at which a simulation is run, it can serve different
purposes. For instance, a fast paced simulation will not be able to receive
synchronization data from the real world, because they are no longer at the same
virtual time as the simulation. Therefore, to update a fast paced simulation with
new data, one must reset it to the current time. These fast paced simulations can
be used for short term anticipation, case in which regular reset is acceptable, or
in long term predictions that do not require input data to be perfectly accurate.
Another way to use a simulation is by keeping its virtual time synchronized with
the real time. This approach can be used to identify flaws in the prediction
models used, or to keep track of some parts of the environment that are not
currently observed by the agent.

4. Applications

The framework presented in the previous section is illustrated by two im-
plementations. The first application shows a dog guarding sheep (section 4.1).
The second application shows a juggler playing with a human under several
conditions: wind and different types of projectiles (section 4.2). The scenar-
ios presented in this section are agent-based simulations. The main difference
between classical agent-based simulations and our approach consists in the ar-
chitecture or such agents (i.e. the dog and the juggler) which also perform their
own, internal simulation of the simulations they inhabit. Following our proposal,
our agents use internal simulation to make their decisions. Simulating the be-
havior of sheep in an imaginary world allows the dog to test different strategies
to gather the sheep. For the juggler, it predicts the trajectory of objects. The
abstract world allows to adapt the representation of the behavior of sheep and
to adapt the representation of the trajectories of objects. The objective here is
not to propose the most effective behavior in a particular context, which could
be achieved by conventional agents (Agre & Chapman, 1987), but our aim is
to illustrate a generic way to create virtual agents that can function beyond a
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given context, even if it is seemingly more complicated than that certain context
requires.

4.1. Virtual Dog Gathering Sheep

In this application, we implemented a virtual dog gathering virtual sheep
(Parenthoën et al., 2001). The motivation is not to simulate an actual dog’s
mental processes but to create a virtual agent that can exhibit similar behavior
given the context and under dynamic conditions introduced by the human user’s
intervention. Starting with a random initial placement of each entity in the
experiment (N dog, M sheep and a shepherd), a human user can take control
of the shepherd and is able to disturb the simulation.

4.1.1. Virtual World

The shepherd moves in the virtual environment. Each sheep distinguishes
enemies (dog or human) from friends (sheep) and grass. A sheep has a reserve
of energy, increasing while eating and spends while running. By default, it goes
straight and ends up becoming exhausted. The sheep eats grass, and becomes
afraid of enemies when they are too near. According to the gregarious instinct
they socialize. The dog is able to identify the human, sheep, pasture zone and
guard point. One or several sheep can move away from the gathering zone.
When approaching a sheep, the dog frightens it and obliges it to return to this
zone (figure 3).

Figure 3: Trajectory of the sheepdog while bringing back three sheep

4.1.2. Imaginary World

The dog simulates in its imaginary world several strategies to gather sheep,
not by logical reasoning but by a behavioral simulation. Thus, it will be able to
make predictions on the future. The dog imagines its behavior by simulating its
own decisional mechanism. To simulate sheep behavior, the dog uses a model of
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prey. We choose to use prototypic Fuzzy Cognitive Maps (FCM) (Kosko, 1986)
as model of prey (figure 4). Modeling predator-prey agents using FCMs has
been proposed before by (Gras et al., 2009), however, in our work we focused
on learning the FCM weights with the purpose of performing simulation within
simulation. Each sheep is associated with its own prototype using FCMs. Thus
the dog can simulate sheep behavior and can do predictions. A FCM controls
the prototype’s speed and another controls the prototype’s angle (figure 5). The
dog simulates herding in its imaginary space using two viewing strategies: one
associated to vision restricted to a closed neighborhood (dog only takes care
about sheep acting in a ten meters radius circle), the other to the largest vision
possible (dog takes care about every sheep). The results of these simulations
are compared in term of best gathering, then the dog adopts the more suitable
strategy to gather sheep. If the herd is divided into two distant groups, the
dog afterwards adopts a simulation in its imaginary world the restricted vision
strategy to prevent it from running inefficiently between the two groups.

Figure 4: The dog possesses is own imaginary world in which it can simulate prototypic
behavior from a library of behaviors, containing the “prey”

4.1.3. Abstract World

Prototypic FCMs evolve through the learning process described in Buche
et al. (2010). The comparison between the result of the imaginary world and
the virtual world allows such adaptation in real time. The learning mechanism
consists in obtaining the result of the simulation from the imaginary world, com-
paring it to what happened in the virtual world, and computing an adaptation
of prototypic FCMs. We limit our study to the learning of the weights of the
causal connections between concepts in a prototypic FCM in order to imitate
a given behavior, by modifying neither the structure of the influence graph of
a FCM, the fuzzyfication1 of the sensors, nor the defuzzyfication2 of the con-

1Fuzzyfication consists in converting external FCM values to FCM concept activations.
2Defuzzyfication consists in converting FCM concept activation to FCM external values.
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Figure 5: The prototypic FCMs to represent the sheep controlling speed (a) and angle (b)

cepts motors. The figure 6 illustrates the modification of a prototype, which
initially contains default weight values, to adjust the speed of a sheep within the
imaginary world to imitate the real sheep’s behavior. We imposed the learning
period. Such a period allows the convergence of the process.
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Figure 6: An FCM of perceptive prey from the library of prototypic FCMs which adapt
themselves by learning.

By simple observation of the sheep, it estimates information necessary to the
fuzzyfication for the prototype. The estimation of sensors values are fuzzyfied
in activation of the concepts “Enemy close” and “Enemy far”. The dynamics
of the prototype occurs and by defuzzyfication of the activation of the effec-
tor motor Escape envy we obtain the image effector. Its corresponds to the
representation that the dog has of prey’s speed. This image effector from the
prototype is compared to an estimation of sheep’s effectors. This comparison
allows to calculate a set of pseudo activations that define desired modifications
of FCM links. The prey prototype adapts itself to a sheep by reiterating the
learning process. Regarding the question of the convergence stability the during
learning, in practice the experiments undertaken on sheep-dog show that con-
vergence occurs and that the sheep-dog is able to adapt its prototypic FCMs
to specific sheep and dogs. We could modify the learning rate through time, as
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a decreasing sequence tending towards zero. That would ensure a theoretical
FCM weight convergence, but the adaptability would be less and less strong
with the age of the actor.

4.1.4. Dynamics
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Figure 7: Instantiation of our framework for a virtual dog

Figure 7 shows the operating principle of an autonomous, predictive and
adaptive virtual actor. Three cognitive processes operate in parallel and syn-
chronize only by intermittent messages that lift inhibitions. Roughly, they cor-
respond, from left to right, to short (< 1s), medium (0, 1s < 10s) and long
term (> 10s) cognition. The first component - the reactive process - operates
at high frequency for the acquisition of certain sensor data and is associated
with a specified group of cognitive maps for various sensorimotor strategies.
The second component - the predictive process - performs internal simulations
of average frequency, which can be synchronized with episodic perceptual infor-
mation. This predictive mode can change the reactive one by providing a new
sensorimotor strategy. The third component - the adaptive process - compares
predictions with perceptions to change behavior patterns used by the other two
methods. When prediction error is obvious, the third mode runs in the back-
ground at low frequency.

4.1.5. Results

We have implemented three scenarios. First, an adaptation of the dog’s
prey prototype to a given sheep, is real time. This application is described in
the previous section. Second, the dog learns a way of gathering sheep by the
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imitation of a human operator or another dog. In this case, the prototypic FCMs
used are its own. Third, a ”paranoiac” sheep learns how to be surrounded by
other sheep and thus remains frightened but does not flee anymore when seeing
a dog. Not modifying FCM ”paranoiac” links allows to adapt sheep behavior
while preserving a “paranoid personality”.

In figure 8, we compare the simulation of prototypic sheep behavior in the
imaginary world (“prey image”) and the sheep behavior in the virtual world
(“sheep model”), before and after learning, while the dog performs the same
trajectory. We note that the simulation is closest to reality after learning.
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Figure 8: More pertinent predictions can be obtained from the imaginary world by using
imitation learning

4.2. Virtual Juggler

This application shows an artificial juggler which predicts the motion of balls
in the air and uses predictions to coordinate its own behavior while juggling.
Thanks to this model it is possible to add a human user or a physical robot to
launch balls that the virtual juggler can catch while juggling, which was not the
case in the original application described in (Buche & De Loor, 2013).

4.2.1. Virtual World

The virtual world is a universe representing a circus consisting of virtual
characters, a human and physical robots juggling together with virtual objects.
Robots and humans are physically represented in the virtual world through their
avatars (copies of the positions of their bodies).

Concerning virtual juggler, the different phases of juggling are as follows.
The juggler begins by looking for a ball in the air. Once the ball has been
spotted, the hand has to be at an estimated reception point (prediction T1).
Then, this reception point can be refined. In order to do so, the hand must
estimate and correct the anticipated trajectory of the target ball (prediction
T2) which is the object of attention. Each hand will therefore be able to catch
or miss the target ball. If the ball is caught, the juggler will be able to throw it
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in the air. Whatever the future of the first ball (caught or missed), the juggler’s
hand once again starts looking for the next flying ball.

The problem of virtual juggler was discussed in Multon et al. (2001); Julliard
& Gibet (1999). But, in these approaches, neither the modeling of approximate
anticipation nor the theory of internal simulation was taken into account. More
generally, the relationships between cognitive sciences and character’s behavior
were not addressed.

4.2.2. Imaginary World

While acting in the virtual environment, the juggler predicts the trajectories
of projectiles in its imaginary world. The objective is to predict the evolution
of their path by approximating the physics and also the perturbations that
influence it, such as variable wind speed. The approximate position of the balls
(T1 and T2) is obtained through their simulation in the imaginary world of
juggling. Within the context of juggling, information must be gathered quickly
in order to maintain the juggling dynamics. The use of mathematical functions
from perceptron-type neural networks (NNs) to make predictions about the
trajectory is adequate. Furthermore, NNs correspond to the need to manipulate
(both spatial and temporal) digital data.

T1 T2

Figure 9: Juggler predicts the motion of the balls in the air and uses its predictions (T1 and
T2) to coordinate its own behavior in order to continue to juggle

It is, of course, also possible to use deterministic equation models of move-
ment to make predictions. However, such precise predictions would be extremely
noise-sensitive (disruption of the environment as the ball falls) and would not
account for the use of approximations and readjustments in real-time which
seem to be the basis of the anticipatory mechanisms that we aim to respect
(Berthoz, 1997).
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4.2.3. Abstract World

The abstract world corresponds to the learning process of weights of the arcs
of these networks (Buche et al., 2011). Since they are universal approximators,
they allow real-time adaptation of the juggler gestures to different types of
disturbances.

We chose a topology with two hidden layers as the aim was to approximate
a continuous function (Cybenko, 1989). Each hidden layer has 19 neurons, and
we thus obtain 3×19×19×3 multilayer perceptrons. We assign the perceptron
weights with given values prior to learning. The activation function of the
neurons is limited. The learning algorithm is a backpropagation of the gradient
error. Learning is thus conducted with a maximum of 100 iterations using the
Fast Artificial Neural Network 3 (FANN) library.

4.2.4. Dynamics

Figure 10 shows the operating principle of an autonomous, predictive and
adaptive virtual actor. Three cognitive processes operate in parallel and syn-
chronize only by intermittent messages that lift inhibitions.
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Figure 10: Instantiation of our framework for a virtual juggler

The general features of this proposition allow interactions between several
jugglers. To do that, the only change is the direction of the ball launched by

3http://leenissen.dk/fann/wp/
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each juggler (figure 11a). The juggler can also catch a new ball thrown by a
human user (figure 11b). This is useful for evaluating the believability of the
virtual juggler (real-time decision-making, online adaptation, etc.). The human
user interacts with the virtual juggler by using different devices (1) wiimote (2)
data gloves (3) razer hydra or (4) arm with force feedback.

(a) (b)

Figure 11: Multi-jugglers (a) and a human can juggle with the virtual juggler using the
Wiimote (b)

The virtual juggler can also juggle with an avatar of a physical robot (figure
12). The environment then provides interactions between virtual jugglers, hu-
mans and physical robots (figure 13). The decision of the robot uses the same
mechanisms (simulation within simulation) as the virtual juggler does.

(a) (b)

Figure 12: Physical robot (a) juggling with virtual juggler (b)

4.2.5. Results

We evaluate the anticipatory mechanism regarding its qualities (impact on
decision-making) and the final result (the juggler animation). Regarding the
quality, the generalization abilities of NN allow the online adaptation of the
juggler’s motion to disturbances. Two experiments consist in disturbing the
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Figure 13: Physical robot, human and virtual jugglers juggling

juggler to validate its robustness to variability in the environment. At first, noise
is introduced in the projectile trajectories : we exchange balls by maces (figure
14a). Through the prediction by NN T1 is less accurate, NN T2 is able to correct
it properly, and the juggler continues to juggle when balls are transformed in
maces. Second, gravity in the virtual environment is modified, and wind is
added (figure 14b). The juggler is not informed of these changes. Thanks to the
use of NN, our juggler can adapt its arm’s position in a precise position, and
it can catch a ball even if some small disturbances arrive. Classical planning
approaches are used to face these problems: if they use discrete variables, it
implies the impossibility to adopt continuous values (such as the arm position);
if they use approximate reasoning -which allows us to correct in line a drift
from a planning it implies that this drift should be provided and then explicitly
represented.

(a) (b)

Figure 14: Juggling with maces (a) and real time disturbance (b)

Regarding the final result, the virtual juggler has the abilities to adapt and
to learn the changing behavior of the environment online. Of course, this is also
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the case with classical reinforcement learning algorithms, but with this kind of
algorithms, one learns qualities associated to discrete states. This mechanism
takes a very long time and is not tractable online during an interaction with a
human. Moreover, it generally addresses discrete decision when, for our juggler,
the decision leads to a precise position of the hand. In our case, the system
does not only recognize changes in behavior but can also learn these changes.
To sum up, without our architecture, the juggler would be unable to credibly
lose its ball and to adapt to a human juggler, which never interacts exactly
in the same way because it is the human nature for behavior to be imprecise
but rarely irrelevant. These experiments and the final result can be watched at
https://youtu.be/rOZPPRLEUyg.

5. Conclusion and Future Works

5.1. Proposal

For the behavioral believability of the interaction of a virtual entity to in-
crease, it would seem essential to integrate an anticipatory capacity by which
the behavior of other entities and their consequences on the environment can
be predicted. To do so, we suggest an architecture by which the three modes
— reactivity, predictability, and adaptability — can function asynchronously in
parallel. The prediction is made by an autonomous world of a simulation within
a simulation, in which the entity can simulate itself (with its own behavioral
model) and its environment (with the representations that it constructs of the
behaviors of other entities).

A first application is related to a real-life example involving different types
of agents: a shepherd, dogs, and a herd of sheep. The simulation within the
simulation process allows the dog to simulate sheep behavior (using FCMs) and
to anticipate the result of different strategies to gather sheep. In the abstract
world, the learning mechanism allows the dog to adapt an FCM prey prototype
to a given sheep in real time, which leads to their predictions becoming more
significant. In a second application, we developed a virtual juggler that antici-
pates the trajectory of the balls without calculating them precisely. The juggler
hypothesizes using an open and uncertain environment with variable properties,
that is to say, that are unknown from an analytical standpoint. We therefore
use universal approximators obtained through learning.

5.2. Limits

The drawbacks of all these important properties are as follows: (1) the lack of
correlation with real data; and (2) the need for dedicated models of predictions.

These drawbacks indicate how some work still remains to address a real
autonomous agent.
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5.3. Outlook

The next steps in applying our approach to more diverse scenarios, consist
in further research on overcoming the previously mentioned limitations that it
faces. It is clear that models that are fine-tuned for specific scenarios will cease
to function properly when applied to completely novel situations. Therefore,
it is important for the agent using our approach to have the capability of con-
structing new models in real time, using a more flexible repository of learning
techniques. Furthermore, for the agent to be truly autonomous, the human ex-
pert that chooses which models are applied to each scenario has to be removed
from the loop, therefore the agent requires a mechanism to choose which are the
current best models to apply. This can be achieved in a generic way through
a constant “reality check”, by which the internal simulations are evaluated in
comparison with the real evolution of the environment and their accuracy can
be ranked accordingly. Our research now focuses on developing the generic ar-
chitecture entitled “ORPHEUS: Reasoning and Prediction with Heterogeneous
rEpresentations Using Simulation” (Polceanu, 2015) with the aim to account
for the limitations of our current results, that would lead to a more complete
use of the “simulation within simulation” paradigm.
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Decety, J., & Grèzes, J. (2006). The power of simulation: imagining one’s own
and other’s behavior. Brain research, 1079 , 4–14.

Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory
of mind-reading. Trends in Cognitive Sciences, 2 , 493 – 501.

Goldman, A. (2002). Simulation theory and mental concepts. Simulation and
Knowledge of Action, (p. 119).

Goldman, A. (2005). Imitation, mind reading, and simulation. Perspective on
Imitation, from Neuroscience to Social Science, 2 , 7993.

Gras, R., Devaurs, D., Wozniak, A., & Aspinall, A. (2009). An individual-based
evolving predator-prey ecosystem simulation using a fuzzy cognitive map as
the behavior model. Artificial Life, 15 , 423–463.

Gray, J., & Breazeal, C. (2005). Toward helpful robot teammates: A simulation-
theoretic approach for inferring mental states of others. In Proceedings of the
AAAI 2005 workshop on Modular Construction of Human-Like Intelligence.

23



Hanratty, T., Hammell II, R. J., Yen, J., & Fan, X. (2007). Utilizing Concept
Maps to Improve Human-Agent Collaboration Within a Recognition-Primed
Decision Model. 2007 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT’07), (pp. 116–120).

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in
cognitive sciences, 8 , 280–285.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and percep-
tion. Trends in Cognitive Sciences, 6 , 242 – 247.

Hesslow, G. (2012). The current status of the simulation theory of cognition, .
1428 , 71–79.

Jeannerod, M. (1994). The representing brain: Neural correlates of motor in-
tention and imagery. Behavioral and Brain Sciences, 17 , 187–202.

Julliard, F., & Gibet, S. (1999). Reactiva’motion project: Motion synthesis
based on a reactive representation. In GW ’99: Proceedings of the Inter-
national Gesture Workshop on Gesture-Based Communication in Human-
Computer Interaction (pp. 265–268). London, UK: Springer-Verlag.

Kennedy, W., Bugajska, M., Harrison, A., & Trafton, J. (2009). like-me simu-
lation as an effective and cognitively plausible basis for social robotics. Inter-
national Journal of Social Robotics, 1 , 181–194.

Kennedy, W. G., Bugajska, M. D., Adams, W., Schultz, A. C., & Trafton, J. G.
(2008). Incorporating mental simulation for a more effective robotic team-
mate. In Proceedings of the 23rd national conference on Artificial intelligence
- Volume 3 AAAI’08 (pp. 1300–1305). AAAI Press.

Kober, J., Glisson, M., & Mistry, M. (2012). Playing Catch and Juggling with
a Humanoid Robot. In IEEE-RAS International Conference on Humanoid
Robots.

Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Machine
Studies, 24 , 65–75.

Kunze, L., Dolha, M. E., Guzman, E., & Beetz, M. (2011). Simulation-based
temporal projection of everyday robot object manipulation. In Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (pp. 107–114).

Laird, J. E. (2001). It Knows What You’re Going To Do: Adding Anticipa-
tion to a Quakebot. In Proceedings of the fifth international conference on
Autonomous agents (pp. 385 – 392).

Mataric, M. (2002). Visuo-motor primitives as a basis for learning by imitation:
linking perception to action and biology to robotics. In K. Dautenhahn, &
C. Nehaniv (Eds.), Imitation in Animals and Artifacts (pp. 392–422). MIT
Press.

24



Multon, F., Ménardais, S., & Arnaldi, B. (2001). Human motion coordination:
a juggler as an example. The Visual Computer , 17 , 91–105.
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