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Abstract

This article deals with artificial intelligence models inspired from cognitive science. The scope of this paper is the simulation of the
decision-making process for virtual entities. The theoretical framework consists of concepts from the use of internal behavioral simula-
tion for human decision-making. Inspired from such cognitive concepts, the contribution consists in a computational framework that
enables a virtual entity to possess an autonomous world of simulation within the simulation. It can simulate itself (using its own model
of behavior) and simulate its environment (using its representation of other entities). The entity has the ability to anticipate using internal
simulations, in complex environments where it would be extremely difficult to use formal proof methods. Comparing the prediction and
the original simulation, its predictive models are improved through a learning process. Illustrations of this model are provided through
two implementations. First illustration is an example showing a shepherd, his herd and dogs. The dog simulates the sheep’s behavior in
order to make predictions testing different strategies. Second, an artificial 3D juggler plays in interaction with virtual jugglers, humans
and robots. For this application, the juggler predicts the behavior of balls in the air and uses prediction to coordinate its behavior in
order to juggle.
� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For many years, researchers have tended to create vir-
tual environments that provide the opportunity for a
human to evolve while interacting with virtual entities.
For these virtual worlds to be believable, each entity con-
trolled by the computer must exhibit a behavior giving
the illusion of being controlled by another human. This
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raises the following question: how can an entity be
equipped with believable autonomous behavior in a com-
plex virtual environment in which humans participate?

Traditional symbolic artificial intelligence techniques
have been applied to define these behaviors. However,
these techniques have limitations as they are mainly based
on predetermined rules of behavior chosen by the designer.
Indeed, in complex (open simulation, heterogeneous and
participatory) virtual worlds, entities may have unpre-
dictable behavior (behavioral variability of autonomous
entities, free will of human users), thus creating new situa-
tions. When faced with situations unforeseen by the pro-
grammer, entities may display unsuitable behaviors.
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In this paper, virtual entities are considered at the same
level as human, by integrating human characteristics that
are currently lacking in existing artificial intelligence mech-
anisms. To address this issue, we were inspired by ideas and
concepts from cognitive science in defining human
decision-making. More precisely, our focus is on finding
a computational approach to reproduce adaptive behavior
in an intelligent agent, inspired from the human’s anticipa-
tion ability and capacity to adapt while interacting. We will
then be able to examine the use of such concepts into an
artificial entity’s decision-making process.

This paper is organized as follows. After presenting the
concepts from cognitive science which highlight simulation
as being an essential aspect of cognition and from which
the presented approach is inspired, Section 2 analyzes
related works in computational models. Although studies
from cognitive science suggest that mental simulation is
central to decision making and arguably other important
aspects of reasoning, existing approaches do not offer a
generic computational model of this paradigm.

To address this issue, in this paper we present a generic
computational model of mental simulation. Thus Section 3
describes a conceptual framework where the entity pos-
sesses an autonomous world of simulation within the sim-
ulation. In this internal world, the entity is able to simulate
itself (using its own model of behavior) and also simulate
its environment (using its representation of other entities).
The entity also has the ability to anticipate and to learn
using internal simulations. In our previous works, the con-
cept of internal simulation has been studied, for test pur-
poses, in two applications described in previous
publications (Buche, Chevaillier, Nédélec, Parenthoën, &
Tisseau, 2010; Buche & De Loor, 2013; Buche, Jeannin-
Girardon, & De Loor, 2011). These applications illustrated
the applicability of mental simulation paradigm to
decision-making, but connections between decision/antici
pation/learning were ad hoc for each specific application
and required complete architectural modifications to be
applied to a new domain.

To test the genericity of the computational model, we
have reused these examples in Section 4. The key idea is
to show that it is possible, using our architecture, to switch
from one domain to the other without making changes to
processes binding decision/anticipation/learning. First, we
illustrate our approach through an example that simulates
dogs gathering sheep. To simulate sheep behavior, the dog
uses fuzzy cognitive maps (FCM) of prey. The dog can
therefore simulate the sheep’s motion in order to make pre-
dictions and to test different strategies. Without changing
the architecture, we illustrate our proposal by an artificial
3D juggler playing with virtual jugglers, humans and
robots. For this application, the juggler predicts the behav-
ior of balls in the air and coordinates its own behavior
accordingly, in order to juggle. The virtual juggler uses
neural networks to simulate ball motion. The proposed
architecture allows the agent to adapt to changes intro-
duced by adding other agents and human users to launch
balls that the virtual juggler can catch while juggling, which
was not the case in the original application described in
Buche and De Loor (2013). Without changing the architec-
ture, we were able to switch from FCMs to neural networks
as a controller for the prediction process. Finally, Section 5
concludes and introduces future work.
2. Context

2.1. Cognitive science toward artificial intelligence

There is a growing body of literature in cognitive science
advocating the simulation process as being central in cog-
nition (Decety & Grèzes, 2006; Hesslow, 2002, 2012;
Pezzulo, Candidi, Dindo, & Barca, 2013). Contrary to
the classical cognitive approach, in these simulative theo-
ries, perceptual, cognitive and motor process are not con-
sidered as being part of separate domains but rather that
sensorimotor processes are fundamental to cognitive
activities.

Despite different views of the concept of simulation, one
central common point is that simulation corresponds to the
reactivation of actions that were formerly executed and
stored in memory (Decety & Grèzes, 2006). For example,
in his simulation theory (ST), Hesslow (2012) proposed
three main assumptions: (1) simulation of action, (2) simu-
lation of perception and (3) anticipation.

The simulation of action (1) implies that brain areas
recruited when performing an action are similar to the ones
activated when covertly (i.e., when the action is not exe-
cuted) reactivating the action. In this way, one can consider
that a simulated action corresponds to an unexecuted
action. The second statement (2) means that perceptual
activity may occur in absence of external stimuli. Like dur-
ing the simulation of action, activation in the brain is sim-
ilar when perceiving external information and when
imaging perceiving this information. Finally (3), Hesslow
(2012) proposed the existence of some associative mecha-
nisms allowing both behavioral and perceptual activity that
could produce activation in the sensory areas of the brain.
The direct consequence is the possibility to generate per-
ceptual activation from simulated action similarly to
obtaining this activation from the actual execution of the
real action.

In sum, one can simulate both action and perception.
When doing so, the recruited brain areas are the same as
the ones activated when actually performing the action or
actually perceiving external information. Moreover, action
simulation can elicit perceptual activity similar to the one
which would have occurred if the action were actually per-
formed. The benefit of this anticipation mechanism is two-
fold. First, one can be prepared to respond to the
consequence of one’s own action. Second, one can evaluate
in advance the consequence of an action and thus select the
most appropriate behavior to achieve the indented goal
(Hesslow, 2002; Pezzulo et al., 2013).
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The simulation theories are not limited to studying how
humans deal with their own actions but they extend to the
social domain by taking into account how individuals pro-
cess other’s behavior. The proposition here is that, when
observing others acting, one would simulate oneself per-
forming the action (Berthoz, 1997; Jeannerod, 1994). This
idea has been reinforced by the discovery, in monkeys, of
mirrors neurons which are sensorimotor neurons that fire
both when an action is performed and when the same
action is observed to be executed by someone else
(Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). Since, sev-
eral observations have supported the existence of a Mirror
Neuron System in humans, with shared neural substrates
for action identification and action execution ((Rizzolatti
& Craighero, 2004) for a review).

Simulating the actions of others would contribute to
understanding and anticipating their consequences
(Gallese & Goldman, 1998). It has also been proposed that
these simulation mechanisms would be significantly
involved in more general and higher level social cognition
and possibly underlie the capacity of inferring mental states
of others, known as Theory of Mind (Gallese & Goldman,
1998; Goldman, 2002). According to the simulation theory
(Goldman, 2002, 2005), in order to attribute mental states
to others we have to use our own mental mechanisms. In
other words, in order to read others’ minds, we have to
adopt their perspective.

Cognitive science research has also studied how people
use simulation mentally represent mechanical systems
Hegarty (2004) and reason about how they evolve. More-
over, it has been suggested that there exists a common net-
work in the brain that is responsible for episodic memory,
navigation, theory of mind and prospection abilities in
humans Buckner and Carroll (2007).

To sum up this section, several propositions in the
cognitive science domain consider simulation as a funda-
mental process of cognition. Through simulation, the brain
can anticipate events in the environment, either if they are a
consequence of its own action or another’s behavior. Thus,
simulation mechanisms allow individuals to anticipate
future events, so that they can adjust to their ever changing
environment. Following this conception, the focus of
Table 1
Our analysis of the existing computational models.

Computational models objectives References

1 – Behavioral internal simulation

1.1 – Imitation of Kin
– Intention recognition Buchsbaum et al. (2005), Gray an
– Learning novelty Buchsbaum et al. (2005) and Cost

1.2 – Representation of others
– Predicting behavior Ustun and Smith (2008), Laird (2
– Collaboration Kennedy et al. (2008), Roy et al.
– The self Kunze et al. (2011), Bongard et a

(2002), Gray and Breazeal (2005),

2 – Environmental internal simulation

2.1 – Virtual environment Kunze et al. (2011), Polceanu and
2.2 – Real environment Roy et al. (2004), Kober et al. (20
our work is to study how internal simulation can
enable a virtual agent to adapt to the dynamics of its
environment.

An analysis of state of the art computational approaches
to internal simulation is provided in the following section.
The conclusions of this study allows us to then sketch a
conceptual framework which is arguably able to encom-
pass the results of previous approaches and provide a more
generic computational solution for building internal simu-
lation based agents. For clarity and tractability, the test
scenarios used in this work are considerably simpler than
real world human abilities such as reasoning about other
people’s beliefs and desires, but still preserve highly
dynamic behavior, where we evaluate our agents’ ability
to adapt.

2.2. Computer science related works

Computational applications of mental simulation are
relatively recent and limited to specific scenarios. Results
have been obtained by complementing existing systems
with prediction and viewpoint adoption capabilities in con-
texts such as navigation (Bongard, Zykov, & Lipson, 2006;
Kennedy, Bugajska, Harrison, & Trafton, 2009; Svensson,
Morse, & Ziemke, 2009), sensory integration (Cassimatis,
Trafton, Bugajska, & Schultz, 2004), object manipulation
(Roy, yuh Hsiao, & Mavridis, 2004; Kunze, Dolha,
Guzman, & Beetz, 2011), human-agent interaction
(Breazeal, Gray, & Berlin, 2009; Buchsbaum, Blumberg,
Breazeal, & Meltzoff, 2005) and goal recognition (Gray &
Breazeal, 2005; Rao, Shon, & Meltzoff, 2004), which indi-
cate that mental simulation is advantageous over tradi-
tional techniques in these chosen scenarios.

In Polceanu and Buche (2013a), we have examined
related works in various contexts of using mental simula-
tion for decision-making. Two main directions that can
be distinguished in simulation-based approaches to artifi-
cial decision-making, anticipation and learning (cf
Table 1):

1. Behavioral internal simulation: predict the consequences
of actions on behavior to infer knowledge about others
d Breazeal (2005), and Breazeal et al. (2009)
a and Botelho (2013)

001), and Roy et al. (2004)
(2004), Kennedy et al. (2009), and Hanratty et al. (2007)
l. (2006), Dautenhahn and Nehaniv (2002, chap.), Alissandrakis et al.
Roy et al. (2004), and Kennedy et al. (2008, 2009)

Buche (2013b), Svensson et al. (2009), and Buche and De Loor (2013)
12), and Cassimatis et al. (2004)
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2. Environmental internal simulation: predict the conse-
quences of actions on the physical environment (for
example, in the case of a domino scenario, the use of
mental simulation would allow the agent to anticipate
different sequences of falling pieces)

Taken together, these existing approaches cover all
areas of interest in using mental simulation as an anticipa-
tion and decision-making technique, however there exists
no implementation that addresses all of them on its own.
The majority of implementations have begun in virtual
reality (Buche & De Loor, 2013; Kunze et al., 2011;
Polceanu & Buche, 2013b; Svensson et al., 2009), but fewer
have taken the leap to robotic embodiments due to
dependencies on specific information about their environ-
ment. Those that do however pass into the real world
(Cassimatis et al., 2004; Kober, Glisson, & Mistry,
2012; Roy et al., 2004) are either limited in the actions they
can perform or rely heavily on repositories of actions
that are abstracted for the use within a higher-level
framework.

Focus is placed on solving only a subset of the cognitive
functions associated with mental simulation, and this is
done using specific models of the task at hand. Hence,
not many elements are taken into account into mental sim-
ulation, for example anticipating trajectories but not colli-
sions (Breazeal et al., 2009; Cassimatis et al., 2004;
Kennedy, Bugajska, Adams, Schultz, & Trafton, 2008;
Kennedy et al., 2009; Svensson et al., 2009; Ustun &
Smith, 2008), or focusing on only one of the environmental
and behavioral aspects of the environment, although they
are generally interdependent.

To conclude, current approaches are constrained to
function in relatively specific setups, far away from a gen-

eric perspective. Although approaches exist that function
in real time, online learning is used only for specific tasks.
The mechanism of the simulation paradigm, such as con-
tinuous imagination-reality comparison in complex envi-
ronments and imaginative behavior, are not yet fully
exploited.

To overcome these shortcomings, in the next section we
present a generic framework to model virtual entities that
are able to use internal simulation paradigm to anticipate,
learn, take decisions and act in dynamic environments
where the agent’s actions can be influenced or interrupted
by other agents or humans.
Fig. 1. The simulation within simulation process: the entity (left)
anticipates the behavior of the other entities (right). It possesses an
imaginary world in which it ‘‘imagines” what it going to happen.
3. Proposal

Our proposal is based on the theory of internal simula-
tion. The idea is to use this concept as the mechanism to
control a virtual entity with the ability to predict and learn.
In this section, we first propose a generic framework to
model virtual entities (Section 3.1). Constraints and meth-
ods regarding the implementation will be discussed after-
wards (Section 3.2).
3.1. Generic framework

Following the reasoning expressed in previous sections,
we represent three modes to model virtual actor, as follows:

1. Reactive mode evolving in the virtual world
(Section 3.1.1);

2. Prediction mode evolving in the imaginary world
(Section 3.1.2);

3. Learning mode evolving in the abstract world
(Section 3.1.3).

3.1.1. Virtual world
A virtual world is a classical simulation with autono-

mous entities evolving in interaction. A virtual actor is an
agent with sensors for perceiving, effectors for acting and
a behavioral model to perform decision-making.

3.1.2. Imaginary world

While acting within the virtual world, each entity can
make predictions in its imaginary world. This process con-
sists in simulating the entity’s own behavior (with its own
behavioral model), and that of the environment it inhabits
(using the representation that it has of the behavior of
other entities). This simulation occurs a phase ahead of
the original simulation, enabling the entities to make pre-
dictions. This imaginary space, unique to each entity, func-
tions in parallel with its activity within the virtual world,
asynchronously so as not to block the behavioral anima-
tion. This imaginary world is a universe of simulation
within the simulation (Fig. 1).
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3.1.3. Abstract world

Prediction in the imaginary world implies a representa-
tion of the external world and of its dynamic. To obtain
this representation can be a hard challenge because a world
adapted to this approach is open: unpredictable interac-
tions can appear at any time and thus the dynamic proper-
ties can be disturbed. So, learning mechanisms are a good
way to learn the dynamics of the world. In our proposal,
predictions in the imaginary world are improved by observ-
ing the virtual world online. The virtual actor will then
modify its representations of other entities using a learning
mechanism. It must be noted that this observed world can
also be populated with other actors, or with human-
controlled avatars (Stoffregen, Gorday, Sheng, & Flynn,
1999). Similarly, for the approach to be generic, it is impor-
tant for the control of the behavioral model to be indepen-
dent of the learning mechanism, so that the model might be
piloted by any decisional mechanism. The development of
learning adds an entirely new dimension to our model.

3.1.4. Dynamics

In the examples given within this work, virtual entities
evolve in a virtual world (first dimension: the virtual
world), simulate the representation of behaviors in an
imaginary world (second dimension: the imaginary world),
and adapt the representation of behaviors through learning
(third dimension: the abstract world). The challenge here is
therefore to identify the three dimensions and to under-
stand their interactions (Fig. 2). The three worlds evolve
in parallel and correspond to three different levels of
abstraction. Nevertheless, they are all related and share
information. The virtual world provides the necessary
P
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3.2. Implementation

The implementation we propose is sequenced in three
steps: (1) observation (2) prediction and (3) learning. Each
step is described in the following.

3.2.1. Steps

Step 1: Observation (Models Choice and Estimation)

� Models Choice. In most cases of complex dynamic
environments, it is not possible to predict all behav-
iors using only one prediction model. Therefore the
question arises of which model is most fit in a given
situation. The most common approaches involve an
expert who, based on his or her past experience
regarding a given problem, can suggest a most likely
to succeed solution. However, this type of approach
requires the intervention of the human expert when
entirely new scenarios arise. To overcome the need
for external intervention in model selection, the agent
will require to test the prediction accuracy of several
models, and choose the most efficient one. In the con-
text of simulation in the simulation paradigm, this
model selection is possible due the constant feedback
received by the agent from its environment. Having a
Adaptive

Learning

redictive

M
odification

nticipation

ual Entity

rocess Process

ginary World Abstract World

C
om

paraison

ty mode), the imaginary world (predictability mode) and the abstract world
.



C. Buche et al. / Cognitive Systems Research 40 (2016) 46–58 51
repository of general behavior models can allow the
agent to select different methods for describing each
behavior observed in its environment. Thus, we con-
sider the agent has a library of prototypic behaviors
models. This library represents the agent’s behavioral
culture (Mataric, 2002). For example an animal’s
library is made up of the prototypic behavior of both
predator and prey.

� Estimation. The agent estimates model-sensors and
model-effectors through observation. We make the
assumption that these features are available.

Step 2: Prediction (Simulating behavior). The agent
imagines its own behavior by simulating its
own decisional mechanisms and imagines the
behavior of the other actors using prototypic
behavior models.

Step 3: Learning (Models reconsiderations). The aim is
to provide the ability for the agent to adapt its
representation of other actors’ behavior. This
learning is done using the comparison between
the simulation model (imaginary world) and
the observation of reality (virtual world).

3.2.2. Technical considerations

Achieving a functional instance of an agent capable of
imagining the effects of its actions in the world, and possi-
ble outcomes of complex situations, poses a set of technical
challenges. The real-time autonomous nature of this agent,
raises the question of execution speed, as the agent must be
able to retrieve the state of the world at any given moment
and extract knowledge from this information, to be used
within the higher levels of abstraction. In the scenario
where the agent interfaces with the real world, the difficulty
of this task greatly increases, as computer vision, natural
language processing and other interface related aspects still
pose a challenge to researchers and developers.

The agent can then create multiple simulations, different
versions of reality, through which predictions can be made
and solutions to problems can be found. Based on these
predictions, the agent can make decisions on how to act,
or it can gain novel knowledge about the environment
and other inhabitants. Considering that many simulations
may be required, a parallel architecture is the key approach,
so that multiple possibilities can be tested simultaneously,
without great performance overhead. Aiming for a
network-based architecture which would allow the agent
to run simulations on multiple machines would be pre-
ferred in this case.

When complexity increases, a complete simulation of
the environment might not prove to be efficient, therefore
an attention mechanism must be put in place to select rele-
vant aspects that require prediction. Moreover, as the sim-
ulation happens, events may happen in the real world, and
therefore the simulation should be resynchronized.
Depending on the speed at which a simulation is run, it
can serve different purposes. For instance, a fast paced sim-

ulation will not be able to receive synchronization data
from the real world, because they are no longer at the same
virtual time as the simulation. Therefore, to update a fast
paced simulation with new data, one must reset it to the
current time. These fast paced simulations can be used
for short term anticipation, case in which regular reset is
acceptable, or in long term predictions that do not require
input data to be perfectly accurate. Another way to use a
simulation is by keeping its virtual time synchronized with
the real time. This approach can be used to identify flaws in
the prediction models used, or to keep track of some parts
of the environment that are not currently observed by the
agent.
4. Applications

The framework presented in the previous section is illus-
trated by two implementations. The first application shows
a dog guarding sheep (Section 4.1). The second application
shows a juggler playing with a human under several condi-
tions: wind and different types of projectiles (Section 4.2).
The scenarios presented in this section are agent-based sim-
ulations. The main difference between classical agent-based
simulations and our approach consists in the architecture
or such agents (i.e. the dog and the juggler) which also per-
form their own, internal simulation of the simulations they
inhabit. Following our proposal, our agents use internal
simulation to make their decisions. Simulating the behavior
of sheep in an imaginary world allows the dog to test dif-
ferent strategies to gather the sheep. For the juggler, it pre-
dicts the trajectory of objects. The abstract world allows to
adapt the representation of the behavior of sheep and to
adapt the representation of the trajectories of objects.
The objective here is not to propose the most effective
behavior in a particular context, which could be achieved
by conventional agents (Agre & Chapman, 1987), but our
aim is to illustrate a generic way to create virtual agents
that can function beyond a given context, even if it is
seemingly more complicated than that certain context
requires.
4.1. Virtual dog gathering sheep

In this application, we implemented a virtual dog gath-
ering virtual sheep (Parenthoën, Reignier, & Tisseau,
2001). The motivation is not to simulate an actual dog’s
mental processes but to create a virtual agent that can exhi-
bit similar behavior given the context and under dynamic
conditions introduced by the human user’s intervention.
Starting with a random initial placement of each entity in
the experiment (N dog, M sheep and a shepherd), a human
user can take control of the shepherd and is able to disturb
the simulation.
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4.1.1. Virtual world

The shepherd moves in the virtual environment. Each
sheep distinguishes enemies (dog or human) from friends
(sheep) and grass. A sheep has a reserve of energy, increas-
ing while eating and spends while running. By default, it
goes straight and ends up becoming exhausted. The sheep
eats grass, and becomes afraid of enemies when they are
too near. According to the gregarious instinct they social-
ize. The dog is able to identify the human, sheep, pasture
zone and guard point. One or several sheep can move away
from the gathering zone. When approaching a sheep, the
dog frightens it and obliges it to return to this zone (Fig. 3).

4.1.2. Imaginary world

The dog simulates in its imaginary world several strate-
gies to gather sheep, not by logical reasoning but by a
behavioral simulation. Thus, it will be able to make predic-
tions on the future. The dog imagines its behavior by sim-
ulating its own decisional mechanism. To simulate sheep
Fig. 4. The dog possesses is own imaginary world in which it can simulate
prototypic behavior from a library of behaviors, containing the ‘‘prey”.
behavior, the dog uses a model of prey. We choose to use
prototypic Fuzzy Cognitive Maps (FCM) (Kosko, 1986)
as model of prey (Fig. 4). Modeling predator–prey agents
using FCMs has been proposed before by Gras, Devaurs,
Wozniak, and Aspinall (2009), however, in our work we
focused on learning the FCM weights with the purpose
of performing simulation within simulation. Each sheep
is associated with its own prototype using FCMs. Thus
the dog can simulate sheep behavior and can do predic-
tions. A FCM controls the prototype’s speed and another
controls the prototype’s angle (Fig. 5). The dog simulates
herding in its imaginary space using two viewing strategies:
one associated to vision restricted to a closed neighbor-
hood (dog only takes care about sheep acting in a ten
meters radius circle), the other to the largest vision possible
(dog takes care about every sheep). The results of these
simulations are compared in term of best gathering, then
the dog adopts the more suitable strategy to gather sheep.
If the herd is divided into two distant groups, the dog after-
wards adopts a simulation in its imaginary world the
restricted vision strategy to prevent it from running ineffi-
ciently between the two groups.

4.1.3. Abstract world

Prototypic FCMs evolve through the learning process
described in Buche et al. (2010). The comparison between
the result of the imaginary world and the virtual world
allows such adaptation in real time. The learning mecha-
nism consists in obtaining the result of the simulation from
the imaginary world, comparing it to what happened in the
virtual world, and computing an adaptation of prototypic
FCMs. We limit our study to the learning of the weights
of the causal connections between concepts in a prototypic
FCM in order to imitate a given behavior, by modifying
neither the structure of the influence graph of a FCM,
the fuzzyfication1 of the sensors, nor the defuzzyfication2

of the concepts motors. Fig. 6 illustrates the modification
of a prototype, which initially contains default weight val-
ues, to adjust the speed of a sheep within the imaginary
world to imitate the real sheep’s behavior. We imposed
the learning period. Such a period allows the convergence
of the process.

By simple observation of the sheep, it estimates informa-
tion necessary to the fuzzyfication for the prototype. The
estimation of sensors values are fuzzyfied in activation of
the concepts ‘‘Enemy close” and ‘‘Enemy far”. The dynam-
ics of the prototype occurs and by defuzzyfication of the
activation of the effector motor Escape envy we obtain
the image effector. Its corresponds to the representation
that the dog has of prey’s speed. This image effector from
the prototype is compared to an estimation of sheep’s effec-
tors. This comparison allows to calculate a set of pseudo
1 Fuzzyfication consists in converting external FCM values to FCM
concept activations.
2 Defuzzyfication consists in converting FCM concept activation to

FCM external values.
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Fig. 6. An FCM of perceptive prey from the library of prototypic FCMs which adapt themselves by learning.
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activations that define desired modifications of FCM links.
The prey prototype adapts itself to a sheep by reiterating
the learning process. Regarding the question of the conver-
gence stability the during learning, in practice the experi-
ments undertaken on sheep-dog show that convergence
occurs and that the sheep-dog is able to adapt its proto-
typic FCMs to specific sheep and dogs. We could modify
the learning rate through time, as a decreasing sequence
tending towards zero. That would ensure a theoretical
FCM weight convergence, but the adaptability would be
less and less strong with the age of the actor.

4.1.4. Dynamics

Fig. 7 shows the operating principle of an autonomous,
predictive and adaptive virtual actor. Three cognitive pro-
cesses operate in parallel and synchronize only by intermit-
tent messages that lift inhibitions. Roughly, they
correspond, from left to right, to short (<1 s), medium (0,
1 s<10 s) and long term (>10 s) cognition. The first compo-
nent – the reactive process – operates at high frequency for
the acquisition of certain sensor data and is associated with
a specified group of cognitive maps for various sensorimo-
tor strategies. The second component – the predictive pro-
cess – performs internal simulations of average frequency,
which can be synchronized with episodic perceptual infor-
mation. This predictive mode can change the reactive one
by providing a new sensorimotor strategy. The third com-
ponent – the adaptive process – compares predictions with
perceptions to change behavior patterns used by the other
two methods. When prediction error is obvious, the third
mode runs in the background at low frequency.

4.1.5. Results
We have implemented three scenarios. First, an adapta-

tion of the dog’s prey prototype to a given sheep, is real
time. This application is described in the previous section.
Second, the dog learns a way of gathering sheep by the imi-
tation of a human operator or another dog. In this case, the
prototypic FCMs used are its own. Third, a ‘‘paranoiac”
sheep learns how to be surrounded by other sheep and thus
remains frightened but does not flee anymore when seeing a
dog. Not modifying FCM ‘‘paranoiac” links allows to
adapt sheep behavior while preserving a ‘‘paranoid
personality”.

In Fig. 8, we compare the simulation of prototypic sheep
behavior in the imaginary world (‘‘prey image”) and the
sheep behavior in the virtual world (‘‘sheep model”), before
and after learning, while the dog performs the same trajec-
tory. We note that the simulation is closest to reality after
learning.
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4.2. Virtual juggler

This application shows an artificial juggler which pre-
dicts the motion of balls in the air and uses predictions
to coordinate its own behavior while juggling. Thanks to
this model it is possible to add a human user or a physical
robot to launch balls that the virtual juggler can catch
while juggling, which was not the case in the original appli-
cation described in Buche and De Loor (2013).

4.2.1. Virtual world

The virtual world is a universe representing a circus
consisting of virtual characters, a humanandphysical robots
juggling together with virtual objects. Robots and humans
are physically represented in the virtual world through their
avatars (copies of the positions of their bodies).

Concerning virtual juggler, the different phases of jug-
gling are as follows. The juggler begins by looking for a
ball in the air. Once the ball has been spotted, the hand
has to be at an estimated reception point (prediction
T1). Then, this reception point can be refined. In order
to do so, the hand must estimate and correct the antic-
ipated trajectory of the target ball (prediction T2) which
is the object of attention. Each hand will therefore be
able to catch or miss the target ball. If the ball is caught,
the juggler will be able to throw it in the air. Whatever
the future of the first ball (caught or missed), the jug-
gler’s hand once again starts looking for the next flying
ball.

The problem of virtual juggler was discussed in Multon,
Ménardais, and Arnaldi (2001) and Julliard and Gibet
(1999). But, in these approaches, neither the modeling of
approximate anticipation nor the theory of internal simula-
tion was taken into account. More generally, the relation-
ships between cognitive sciences and character’s behavior
were not addressed.



T1 T2

Fig. 9. Juggler predicts the motion of the balls in the air and uses its
predictions (T1 and T2) to coordinate its own behavior in order to
continue to juggle.
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4.2.2. Imaginary world

While acting in the virtual environment, the juggler pre-
dicts the trajectories of projectiles in its imaginary world.
The objective is to predict the evolution of their path by
approximating the physics and also the perturbations that
influence it, such as variable wind speed. The approximate
position of the balls (T1 and T2) is obtained through their
simulation in the imaginary world of juggling. Within the
context of juggling, information must be gathered quickly
in order tomaintain the juggling dynamics. The use ofmath-
ematical functions from perceptron-type neural networks
(NNs) to make predictions about the trajectory is adequate.
Furthermore, NNs correspond to the need to manipulate
(both spatial and temporal) digital data (see Fig. 9).

It is, of course, also possible to use deterministic equa-
tion models of movement to make predictions. However,
such precise predictions would be extremely noise-
sensitive (disruption of the environment as the ball falls)
and would not account for the use of approximations
and readjustments in real-time which seem to be the basis
of the anticipatory mechanisms that we aim to respect
(Berthoz, 1997).

4.2.3. Abstract world

The abstract world corresponds to the learning process
of weights of the arcs of these networks (Buche et al.,
2011). Since they are universal approximators, they allow
real-time adaptation of the juggler gestures to different
types of disturbances.

We chose a topology with two hidden layers as the aim
was to approximate a continuous function (Cybenko,
1989). Each hidden layer has 19 neurons, and we thus
obtain 3� 19� 19� 3 multilayer perceptrons. We assign
the perceptron weights with given values prior to learning.
The activation function of the neurons is limited. The
learning algorithm is a backpropagation of the gradient
error. Learning is thus conducted with a maximum of
100 iterations using the Fast Artificial Neural Network3

(FANN) library.

4.2.4. Dynamics

Fig. 10 shows the operating principle of an autonomous,
predictive and adaptive virtual actor. Three cognitive pro-
cesses operate in parallel and synchronize only by intermit-
tent messages that lift inhibitions.

The general features of this proposition allow interac-
tions between several jugglers. To do that, the only change
is the direction of the ball launched by each juggler
(Fig. 11a). The juggler can also catch a new ball thrown
by a human user (Fig. 11b). This is useful for evaluating
the believability of the virtual juggler (real-time decision-
making, online adaptation, etc.). The human user interacts
with the virtual juggler by using different devices (1) wii-
mote (2) data gloves (3) razer hydra or (4) arm with force
feedback.

The virtual juggler can also juggle with an avatar of a
physical robot (Fig. 12). The environment then provides
interactions between virtual jugglers, humans and physical
robots (Fig. 13). The decision of the robot uses the same
mechanisms (simulation within simulation) as the virtual
juggler does.

4.2.5. Results

We evaluate the anticipatory mechanism regarding its
qualities (impact on decision-making) and the final result
(the juggler animation). Regarding the quality, the general-
ization abilities of NN allow the online adaptation of the
juggler’s motion to disturbances. Two experiments consist
in disturbing the juggler to validate its robustness to vari-
ability in the environment. At first, noise is introduced in
the projectile trajectories: we exchange balls by maces
(Fig. 14a). Through the prediction by NN T1 is less accu-
rate, NN T2 is able to correct it properly, and the juggler
continues to juggle when balls are transformed in maces.
Second, gravity in the virtual environment is modified,
and wind is added (Fig. 14b). The juggler is not informed
of these changes. Thanks to the use of NN, our juggler
can adapt its arm’s position in a precise position, and it
can catch a ball even if some small disturbances arrive.
Classical planning approaches are used to face these prob-
lems: if they use discrete variables, it implies the impossibil-
ity to adopt continuous values (such as the arm position); if
they use approximate reasoning – which allows us to cor-
rect in line a drift from a planning it implies that this drift
should be provided and then explicitly represented.

Regarding the final result, the virtual juggler has the
abilities to adapt and to learn the changing behavior of
the environment online. Of course, this is also the case with
classical reinforcement learning algorithms, but with this
kind of algorithms, one learns qualities associated to dis-
crete states. This mechanism takes a very long time and
3 http://leenissen.dk/fann/wp/.

http://leenissen.dk/fann/wp/
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Fig. 11. Multi-jugglers (a) and a human can juggle with the virtual juggler using the Wiimote (b).

Fig. 12. Physical robot (a) juggling with virtual juggler (b).
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Fig. 13. Physical robot, human and virtual jugglers juggling.

Fig. 14. Juggling with maces (a) and real time disturbance (b).
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is not tractable online during an interaction with a human.
Moreover, it generally addresses discrete decision when, for
our juggler, the decision leads to a precise position of the
hand. In our case, the system does not only recognize
changes in behavior but can also learn these changes. To
sum up, without our architecture, the juggler would be
unable to credibly lose its ball and to adapt to a human jug-
gler, which never interacts exactly in the same way because
it is the human nature for behavior to be imprecise but
rarely irrelevant. These experiments and the final result
can be watched at https://youtu.be/rOZPPRLEUyg.

5. Conclusion and future works

5.1. Proposal

For the behavioral believability of the interaction of a
virtual entity to increase, it would seem essential to inte-
grate an anticipatory capacity by which the behavior of
other entities and their consequences on the environment
can be predicted. To do so, we suggest an architecture by
which the three modes – reactivity, predictability, and
adaptability – can function asynchronously in parallel.
The prediction is made by an autonomous world of a sim-
ulation within a simulation, in which the entity can simu-
late itself (with its own behavioral model) and its
environment (with the representations that it constructs
of the behaviors of other entities).

A first application is related to a real-life example
involving different types of agents: a shepherd, dogs, and
a herd of sheep. The simulation within the simulation pro-
cess allows the dog to simulate sheep behavior (using
FCMs) and to anticipate the result of different strategies
to gather sheep. In the abstract world, the learning mecha-
nism allows the dog to adapt an FCM prey prototype to a
given sheep in real time, which leads to their predictions
becoming more significant. In a second application, we
developed a virtual juggler that anticipates the trajectory
of the balls without calculating them precisely. The juggler
hypothesizes using an open and uncertain environment
with variable properties, that is to say, that are unknown
from an analytical standpoint. We therefore use universal
approximators obtained through learning.

5.2. Limits

The drawbacks of all these important properties are as
follows: (1) the lack of correlation with real data and (2)
the need for dedicated models of predictions.

These drawbacks indicate how some work still remains
to address a real autonomous agent.

5.3. Outlook

The next steps in applying our approach to more diverse
scenarios, consist in further research on overcoming the
previously mentioned limitations that it faces. It is clear
that models that are fine-tuned for specific scenarios will
cease to function properly when applied to completely
novel situations. Therefore, it is important for the agent
using our approach to have the capability of constructing
new models in real time, using a more flexible repository
of learning techniques. Furthermore, for the agent to be
truly autonomous, the human expert that chooses which
models are applied to each scenario has to be removed
from the loop, therefore the agent requires a mechanism
to choose which are the current best models to apply. This
can be achieved in a generic way through a constant ‘‘real-
ity check”, by which the internal simulations are evaluated
in comparison with the real evolution of the environment
and their accuracy can be ranked accordingly. Our research
now focuses on developing the generic architecture entitled
‘‘ORPHEUS: Reasoning and Prediction with Heteroge-
neous rEpresentations Using Simulation” (Polceanu,
2015) with the aim to account for the limitations of our
current results, that would lead to a more complete use
of the ‘‘simulation within simulation” paradigm.

https://youtu.be/rOZPPRLEUyg
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