Autonomous virtual player in a video game imitating human players :
the ORION framework

Cédric Buche
Lab-STICC, ENIB
Email: buche@enib.fr

Abstract—This paper introduces the design of autonomous
virtual player based on imitation learning using human behav-
ior observations. The ORION model provides both data mining
techniques allowing the extraction of knowledge and behavior
models allowing the control of the autonomous behaviors.
ORION is also an operational tool allowing the representation,
transformation, visualization and prediction of data. We illus-
trate the use of our model by detailing the implementation of a
virtual player for the video game Unreal Tournament 3. Thanks
to ORION, data from low level behaviors were collected through
three scenarios performed by human players : movement,
long range aiming and close combat. Behaviors can then be
learned from the obtained data-sets after transformations and
application of data mining techniques. ORION allows us to
build a complete behavior using an extension of a Behavior
Tree integrating ad hoc features in order to manage aspects of
behavior that we have not been able to learn automatically.

Keywords-Data Mining; Artificial Intelligence; Video Games;
Imitation learning ; Behavior trees.

I. INTRODUCTION

This research focuses on the design of skillful and believ-
able non-Player Characters (NPCs) using imitation learning
techniques. It consists in extracting knowledge from data
produced by human players to reproduce their behaviors.
The datasets obtained can be of various types and forms
and can be abstract or have strong semantics. The data
semantics is generally not taken into account in different data
processing and representation tools such as ELKI [1] WEKA
[2], GGobi [3] or Orange Canvas [4]. Without semantics,
once feature extraction is performed, the data become ab-
stract. Investigating why a particular data is misclassified,
for example, becomes extremely complex. Even if these
tools allow to visualize data through scatter plots, histograms
and other diagrams, in order to perform an analysis it is
essential to visualize the data according to their semantics
[5]. Existing tools suffer from limited data visualization
possibility, providing numeric and categorical data only and
never make the link with behavioral model. The ORION
tackles those issues. The ORION model proposes a generic
approach to represent data-sets. It also offer the possibility
to perform some transformations on these data-sets and to
visualize them. In addition, the ORION model makes the
link between data and behavioral models. Our model can

Cindy Even
Virtualys and Lab-STICC, ENIB
Email: even@enib.fr

Julien Soler
Virtualys
Email: julien.soler@virtualys.com

be used in any game as long as data from its environment
and controls are accessible. In section II, we present the
ORION model. The work-flow is presented in section II-A,
followed by a detailed description using UML diagrams as
a generic data mining model in section II-B. In section III,
we illustrate the use of the ORION tool to control a virtual
player in the game Unreal Tournament 3. We conclude this
paper in section IV.

II. ORION
A. ORION Workflow

Taking the example of a 3D video game, data are usually
strongly associated to concrete concepts such as position,
speed, orientations, hit points, etc. Using ORION, first, the
analyst adds semantics to the data. Then, she can transform
and visualize them according to their semantics to ease the
exploratory analysis. She can also train predictive model
with the data. Next, she uses the behavioral model to build
a behavior using information extracted previously. ORION’s
behavior model is based on a paradigm commonly used in
the video game’s industry giving access to the traditional
tools used for IA.

B. ORION Model

1) ORION Structural Model:

Data Representation: In our model (see Figure 1), we
preserve the semantics of the data via a generic approach:
each attribute has a type. An interface Type must be imple-
mented for each type of data to be processed. The ORION
model provides basic types (reals, integers, enumerations)
but also vectors, images, etc. This list can be extended by im-
plementing the Type interface. These implementations are
then available in our tool via the reflection mechanism of the
language (here, Java). The components that will transform
or display the data therefore have access to the associated
semantics. Dataset stores information on the data set :
its name, if it is or not a time series, and in that case its
sampling frequency, etc. It is composed of VariableSpec
representing the specification of each attribute of the data-
set. The VariableSet is a list containing the values
referenced by VariableSpec.

Data Transformation: In order to perform data
transformations, the generic DataTransform interface
must be implemented (Figure 2). It has access to the
Dataset and a list of VariableSpec to process and
must implement the DataTransform.transform()
method. Allowed transformations can vary significantly

attributes modification, addition of attributes, etc.
Various sub-interfaces (ClusteringTransform,
DataTransformer, SummarizeTransform, etc.)
are available to have access on the type of transformation
performed. Most of the traditional transformation algorithms
are implemented in ORION but other ones can easily be
added by implementing the DataTransform interface.

Data Visualization: Every element in charge of data
visualization implements the DataViewer interface (see
Figure 3). This interface is configurable by the enumeration
DisplayRange to define the data to be represented (the
current datum, the current selection or all data).

Data Prediction: To achieve data prediction and im-
prove the learning functions, ORION offers a level of ab-
straction for all methods of classification and regression.
Figure 4 illustrates this model. Regression and classifi-
cation algorithms implemented in ORION include classi-
cal algorithms and can be extended by implementing the
Classification or Regressor interface.

2) ORION Behavioral Model: ORION’s behavioral model
is an extension of behavior trees (BT). We extended the
model of BT since it is endowed with many qualities
to achieve Al in video games. First, without losing the
potential of BT to add ad hoc code features, we use a
VariableSet as an execution context. It contains, at each
tick, data collected by the agent and allows the different
nodes to change this context (add or change data). The data
being typed, each behavior can control its consistency and
performs introspection on the data.

VariableSpec

+name : string
+isOutput : boolean

+ specs

+type | 0.1
<intorface>>
Type

Dataset

+isTimeSerie : boolean
+ sampleRate : double

+ getNbField(): integer
+ getDefaultValue(): Object

+ getFieldValue(in number: integer, in obj: Object): double

+ fromString(in str: string): Object

+ toString()

+ convert(in objs: Object [1..]): Object
x x

T
VariableSet

FiniteSet i
+ domain : Object [']
‘ Vector3
Real
+ spec : VariableSpec

Image + object |-

+ - + +summaryData

+width : integer ‘Ohjec(
+height : integer

Figure 1. ORION data model

3 +toTransform
+ dataset DataTranstorm | — 5]
patasetl (G4 +transformdd | VariableSpec
+ transform()
x

0.1

i

<<interface>:
DataTransformer

+ tranform(in data: VariableSet)

R

3
g
K

e
—
h
i
i
i
i
i
i
i
i
i
i
i
i

[o I

i ‘ PCADataTransform i IsomapDataTransform
I

DBSCANClustering

NormalizeDataTransform SammonDataTransform ‘

KMeansClustering

Figure 2. ORION data transformation model

+ displayRange e

er 0.1 T an
Selection
Current

iartaces
AttributeViewer
+getConfigDialog() i~ |
& i i

<dierface>>
Renderer

x
+ renderer interace>>
GraphicalViewer
+ draw2d(in datum: VariableSet) [$: =
- i

+ draw3d(in datum: VariableSet) | 0
+ getConfigDialog() o

¥ ¥ :

[0 | [viwrso : P
| RadarPlotviewer |

CompositeRenderer ParalilePlotviewer | |

+ position
I ——— Y

o HistogramPlotViewer | | LineChartViewer ~-'

+color 0.1 + toDisplay.

PointRenderer 5 VariableSpec
+size 0.7

+ shape 0.1

Figure 3. ORION Data visualization model

Data Mining Behaviors: Our objective is to add to BT
the possibility of using learned behaviors from a data-set.
We propose to add node types to the BT model. First, a
particular type of node composed of a FunctionLearner
to predict an output variable based on input variables is
added. This is an action node that changes the context by
adding the predicted value in it. We also add a new type of
composite node to choose which child node to run through
the prediction of a classifier. Finally, we add an action node
composed of a DataTransformer, to transform the data.
Figure 5 presents our model of BT.

Online and Offline Learning: The construction of BT is
possible both online and offline. The offline construction is
simply enabled by our implementation of ORION, manually
constructing the tree and setting the node parameters.But
online training requires to integrate other mechanisms. Most
data mining techniques we studied previously are not iter-
ative so it is not possible to start learning at each tick. We
must therefore offer a flexible method to trigger a learning
algorithm, following an event in the game or after a number
of tick for example. We decide to add to ORION some nodes
dedicated to online learning. These nodes allow to store
online data within a data-set and to launch the training over
those online data-sets (Figure 6).

III. APPLICATION

To imitate human behavior, we first need to collect data
from human players operating in the game environment and
to extract knowledge from these data. The use of ORION

+ explaine« <dinterface>>
FunctionLearner

VariableSpec | 1
S + predict(in datum: VariableSet): Object
+ train(in data: VariableSet [1.."] in labels: Object [1.."])

'y
FFNNRegressor - <dnterface>> |ct—-- SVR
Regressor

+explicatives

<interface>> ;
Classifier KNNRegressor

ConfidenceClassifier
+ predict(in datum: Vari out

double): Obiect

‘ <<interface>>

T

‘ <<interface>> ‘

x
T A
I
I

e

svm i | KNNClassifier
T+ b\naryC\asslﬁersT : H

H H

AdaBoost| | O lassifi QuinlanC4_5

Figure 4. ORION data prediction model

+ behaviol
<dinterface>>

Behaviot 0.1
+ tick(in data: VariableSet)

+ children

[l BreakpointBehavior

| == InvertBehavior

3 ol

ConditionBehavior ===~ i H (d";':c;.» N <<m-r'=;->; R «4"'-"=;->I: Ca SuccessEehavlor‘
impleBehavior ompositeBehavior ecoratorBehavioi
T i T T

__________ FailBehavior
+ functionLearne

SRR FunctionBehavior
FunctionLearne: | 0.1

RepeatUntil

H
ParalleleBehavior

+ dataTransformer |
Data’ |

<dnterfa
DataTransformer |01 RandomBehavior

Figure 5. ORION data mining behaviors

in the design of a Bot for the game Unreal Tournament
3 (UT3) is described in this section. This game is a First
Person Shooter (FPS) video game. The player incarnates a
character with a variety of futuristic weapons, evolving in
an arena with other players. The arena contains items that
players can collect.

A. Human Players Tracking

1) Raw Data: When observing a player evolving in the
game with the GameBots mod, many information about him
and his environment are available. Raw data (table I) are
processed with ORION as explained later.

Enemy positions”

Enemy orientations”

Enemy velocities”

Number of seen items

Item positions”

Number of seen navigation points
Navigation point positions”

(" : the three closest)

Table I
DATA COLLECTED

Player position

Player orientation

Player velocity

Current weapon name

Life points

Remaining ammunition

Shoot (is the player shooting?)
Number of enemies visible

2) Data Collection: In order to create data-sets contain-
ing only sequences where a player is performing a specific
task, we conducted scripted gaming sessions with these three
scenarios :

<<interface>>
Behavior + children

+tick(in data: VariableSet)

‘ DataTransformerBehavior

+dataTransformer lg 1

e <Sinterface>> R— | StoreDataBehavior
DataTransformer SimpleBehavior

= ES
L + dataset | 4 H

HE + dataset i
‘ Data’ >l 1| Classi

0.1 0.1 H
+ dataTransform [o¢ wamaset o1t
ishertoes H + classifir [o 4
DataTransform H
i ntrtace
{ Classifier

FunctionLearner | 0..1 + functionLearner |

+functionLeamer [o 4

Figure 6. ORION online learning model

Movement: The player must simply navigate in the
environment. No enemy is present. The obtained data will
allow us to learn how to move in the environment.

Long range aiming: The player cannot move. He has
infinite ammunition. He is alone in a large room with a
single enemy and only intended to shoot it.

Close Combat: The player is in a small room with an
enemy and must dodge attacks while firing at the enemy.

B. Data Transformation and Visualization

With ORION, exploratory analysis is facilitated by the
addition of semantics. In UT3, most data are spatial locations
of elements in the game. ORION implements several types
associated with locations in three-dimensional space and
allows their visualization. Using these features, we can
rebuild the game play in ORION.Spatial location from raw
data does not allow an effective reproduction of the observed
behavior. The position of the player, should not be used as
input data of a learning algorithm since the learned behavior
would only be able to reproduce actions at specific locations
where they were observed. Using ORION, the data related to
location can be transformed to change the coordinates from
the environment to the local coordinates of the player.

C. Data Prediction

After collecting data with each scenario, the behaviors
need to be replicated individually. ORION allows the inte-
gration of various algorithms : KNN for navigation, FFNN
for aiming and IOHMM for close combat.

1) Movement: For the movements of the Bot we use
the CHAMELEON model [6] and the Stable Growing
Neural Gas (SGNG) [7] algorithm which suggests to learn
a navigation graph with a vector quantization. However,
it is not sufficient to reproduce the movements of a real
player. Players with a minimum of experience have a natural
tendency to strafe (move sideways) when reaching the corner
of a hallway which maximizes their field of vision. To learn
this behavior we submit to the SGNG, besides the player’s
position, his speed and direction. One step of the algorithm
is to submit a data to the network and to find the two
closest data. When the data represents a position in space,
the use of Euclidean distance is totally justified. But when

Figure 7. SGNG Results on UT3 (Left: CHAMELEON, Right: ORION)

data additionally contains speed and direction, the choice is
more complex. The orientation is indicated in our data by a
unit vector, therefore the use of a simple Euclidean distance
would tend to just ignore it from the positions. We perform a
re-scaling by feeding the SGNG with the following distance:
Distance((pl,ol,v1), (p2, 02,v2)) =

- -

d(pi,pé) + ad((;l, 02) + Bd(ﬂ,v) (D)

where d is the regular Euclidean distance and a and f
are scaling factors. To choose the scale parameter related
to the speed, we start from the observation that a player
rarely moves backwards when simply navigating (but does,
when fighting). The direction of the velocity vector is
strongly correlated with the orientation. The norm of the
velocity vector is also relatively constant when the player
is moving (the character control being done by keyboard,
which only contains binary switches). So there seems to be
no need to take into account the speed when calculating the
distance and we therefore choose to set 5 to zero. On the
contrary, the orientation is essential. We expect the vector
quantization performed by the SGNG to be able to contain
two data having the same position but opposite orientations
for example. We choose the parameter « so that criterion is
met. Figure 7 illustrates the result. On the left, the SGNG has
learned the navigation graph (CHAMELEON version). On the
right, the velocity vectors are shown in red and the direction
vectors are shown in blue (o = 250). We distinguish the
difference between the orientation and velocity vectors in
the turns, illustrating the strafing performed by the player. To
reproduce a more realistic navigation behavior, we use the
vector quantization as explained above with the algorithm
K-Nearest Neighbors (KNN). In figure 8, a part of the
network is displayed in (a). The point and the green arrow
correspond respectively to the current position of the agent
and the direction it aims in. As for the construction of the
network with the SGNG, the use of KNN requires the use
of a distance. We use the same distance 1. Knowing the
position and the desired direction of the agent, we try to
get the speed and direction that the agent should adopt. We
must use the velocity vector (indicating the desired direction)
and not the orientation, to compute this distance : o = 0.
To set the parameter 3, we apply this requirement : two

{ul | X L
@ () ©

Figure 8. Movement regression principle in UT3

data should be far away if their velocities are in opposite
directions, even if their position is really close. In figure 8§,
the image (b) illustrates a possible choice of three nearest
data (k = 3). The image (c) shows the regression then
performed by weighting the closest data by the inverse of
the distance to the data submitted to KNN.

2) Long Range Aiming: Aiming is one of the most
important elements of FPS games. For ease we chose to
reproduce the aim of an immobile player. Experienced
player uses, at least partially, the movement for aiming
but beginners and average players mainly perform static
aiming which is what we decide to focus on. The inputs
and outputs involved when performing this behavior are
rather obvious. The outputs are necessarily rotational speeds
(in yaw and pitch) and firing. As inputs, the position of
the enemy is essential and it is likely that its speed is
necessary too. By performing an exploratory analysis, we
found no clear correlation between the enemy orientation
and outputs. So we do not use this information as input
to learn this behavior. But we found the current weapon
is very important as an input. Some weapons are used by
continuously pressing the fire button and others by discrete
firing. In addition, the velocity of projectiles is different
from weapon to weapon. Therefore, the influence of enemy
speed is not the same from one weapon to another. We
identify, regardless of the weapon used, the following
correlations between:

- the Y position of the enemy in the player’s coordinate
system (right or left) and the yaw rotation speed.

- the Z position of the enemy in the player’s coordinate
system (top or bottom) and the pitch rotation speed.

- the Y enemy speed in the player’s coordinate system
(right or left) and the yaw rotation speed.

The differences in behavior according to the weapon
suggest to process different training sessions for each of
them. We learn these behaviors with regression algorithms.
We conducted this learning through Feed Forward Neural
Network (FFNN), KNN and Support Vector Machine (SVM)
algorithms. The quantitative results appeared to be quite
similar from one algorithm to another but the resulting
behaviors were not really correlated to the Mean Squared
Error (MSE). To compare the artificial behaviors to those
of the human player, we reproduce them in our test case

scenario. When collecting the data for the weapon called
LinkGun, the human player scored 50 points and was killed
10 times (so the bot scores 10 points), winning the game. We
have reproduced this scenario using our behavior instead of
the player’s. The best behavior, obtained with a multilayer
perceptron, killed the bot 32 times and was eliminated
50 times, losing the game. Our behavior is therefore less
efficient than the player.

3) Close Combat: Close combat is common in UT3
and some weapons are more appropriate for this kind of
confrontation. By analyzing the data from our scenario in
which the player is in contact with an enemy in a small
room, it was difficult to find relevant information that could
be learned.Changes in direction and jumps are common,
without being obviously correlated with the slightest stimuli.
The player, however, constantly tries to face the enemy.
Strafing and backward runs are often used rather than the
forward movement. The standard regression algorithms that
we used for the aiming behavior did not provide convincing
results. This is expected since the exploratory analysis
shows that there is no obvious dependencies between inputs
and outputs. These algorithms are used to approximate a
mathematical function that, for a given input always provides
the same output. However, in our data set, this is clearly
not the case. Therefore, we used an Input-Output Hidden
Markov Model [8]. A probabilistic model is indeed more
suited to this type of data because it provides a certain
unpredictability.

D. Behavioral Model

We have shown how we reproduce three low level ac-
tions: shoot the enemy from afar, fighting hand-to-hand
and navigating in the environment. Now we have to offer
a complete behavior, using these actions in the behavioral
model of ORION. The overall behavior is implemented with
a Behavior Tree (BT) that we extended in order to be able
to use data mining techniques. Consult [9] for a complete
description of the model. Figure 9 shows a simplified version
of the BT implementing the overall behavior. In this figure,
the green boxes represent reference decorator nodes. They
are used to name a sub-tree in order to reference that sub-
tree elsewhere in the BT. They are only present here for
the sake of clarity. The behavior starts by transforming
the input data (discretization and change of basis). The
implementation details of this node are not shown in the
figure. Then, the selected node is in charge of the choice
of the low level behavior to execute. The implementation of
the nodes CloseCombat and AimAndShoot is quite simple.
First we test if an enemy is present (and close enough in the
case of CloseCombat), following this we select the nearest
enemy (by adding a variable in the execution context), we
then perform the regression with the algorithm that has been
trained beforehand, and finally we delete the variables that
could be used by the Navigation behavior from the execution

context. If no enemy is present, the Navigation behavior is
executed. This behavior consist in choosing a destination
(if none is already selected) and adding it in the execution
context. Then, if needed, it calculates the path to get to
this destination and selects the appropriate navigation point.
Finally it performs regression movement with KNN. The BT
is searched depth-first on each tick.

E. Results

Thanks to ORION tools, we tracked a player for some
minutes (for each scenarios as explained above) in order to
learn the low level behaviors.

1) Subjective analysis: Observations from the resulting
behavior are the following:

Movement: we noticed a significant improvement with
the possibility to obtain movements that reproduce the
strafing behavior of human players at the turning points of
corridors.

Long range aiming: we noticed that the aiming is
different for each weapon, in order to have a satisfying result
we need to perform a training session for each of them.

Close combat: The result was not entirely satisfying.
The behavior of human player is unstructured and unpre-
dictable which complicate its reproduction.

The resulting behaviors are promising since by watching
the bot, it looks like a bot controlled by a human. In order to
validate our proposition we performed a formal evaluation
described in the next section.

2) Objective analysis: In order to evaluate in more detail
the believability of the learned movements of the bot, we
carried out a study. The study consisted of two rounds
of gameplay, followed by a survey. For the first round,
participants played a three minutes training match against
a native bot of the game to become familiar with the game
and its controls. Then, players played a five minutes match
against the trained bot. Finally, players were asked to answer
several Likert-style questions about the the believability of
this bot’s movements. A four-level Likert scale (1:Strongly
disagree, 2:Disagree, 3:Agree, 4:Strongly agree) was used
and the questions were the followings :

1) Its movements resemble those of a human player.

2) It rotates in a human-like fashion.

3) It looks around in a human-like fashion.

4) It avoids walls in a human-like fashion.

5) The path it takes seems to be that of a human player.
Seventeen people volunteered to participate in our study.
Among them, 59% agreed (picked the level 3 or 4 on the
Likert scale) with the question 1), 53% with the questions
2), 3) and 5), and 47% with the question 4). These results
are encouraging since for all elements of movements, to
the exception of wall avoidance, more than half of the
participants found them believable. This allows us to point
out the elements to be considered with greater importance
when learning.

Discretize
Transform
Data

CloseCombat

= ~'

y
AimAndShoot

Navigate

Remove
Destination
and Path

Select
Enemy

Regression
(IOHMM)

Is enemy
visible ?

Is enemy Select
close ? Enemy

Regression
(FFNN)

Remove
Destination
and Path

Check Regression
Next Orientation
PathPoint Velocity (KNN)

No
Destination ?

Choose
Destination

No Path
Computed ?

Compute
Path (A*)

Figure 9. ORION BT of our UT3 Agent

IV. CONCLUSION AND FUTURE WORKS

The ORION model formalizes various techniques coming
from research in data mining for and proposes to gather
them together according to their use (data clustering, vector
quantization, extraction of characteristics or prediction).
Moreover, ORION permits to associate semantics to the
data, enabling a better understanding of the results of data
mining algorithms we want to use. In addition, ORION
also provides a powerful data visualization solution. Finally,
ORION also offers a behavioral model which extend the
BT model. We add to this model the ability to use data
mining techniques to implement complex behaviors. This
model allows both online and offline learning. We illus-
trated the use of our model to produce Al in UT3 game
using machine learning techniques. We have shown how
the exploratory data analysis can provide help to make the
choice of learning techniques to use. We also showed how
some of the supervised and unsupervised learning algorithms
can be used as part of the creation of an Al in video
games. Many issues still need to be resolved before our
behavioral model can automatically and completely learn
both credible and effective behaviors without human inter-
vention. The first opportunity for improvement is probably
automatic identification of low-level behavior in the traces
of the player. Temporal clustering is a difficult task but
work done as part of the video segmentation, such as that
of [10], seems to provide good results. While we have
not been able to effectively adapt these techniques to our
situations, it nevertheless seems to us that some results are
encouraging and that it is worth pursuing. The addition of
a reinforcement learning mechanism to our model seems to
be a possible avenue for improvement. Taking into account
the performance of the behavior seems a very useful source
of information in order to obtain more convincing behavior.

Finally, an automatic construction of BT could be seen as
one of the last steps required for creating a behavior by using
traces and without human intervention.

REFERENCES

[1] E. Achtert, H.-P. Kriegel, and A. Zimek, “ELKI: a software
system for evaluation of subspace clustering algorithms,” in
Scientific and Statistical Database Management, 2008, pp.
580-585.

[2] M. Hall, H. National, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The WEKA Data Mining
Software : An Update,” SIGKDD Explorations, vol. 11, no. 1,
pp- 10-18, 2009.

[3] D. F. Swayne, A. Buja, and D. T. Lang, “Exploratory Visual
Analysis of Graphs in GGobi,” in COMPSTAT, no. Dsc, 2004,
pp- 477-488.

[4] J. Demsar, T. Curk, A. Erjavec, v. Gorup, T. Hocevar, M. Mi-
lutinovi¢, M. MoZina, M. Polajnar, M. Toplak, A. Stari¢,
M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, and
B. Zupan, “Orange: data mining toolbox in python,” The
Journal of Machine Learning Research, vol. 14, no. 1, pp.
2349-2353, 2013.

[5] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba,
“HOGgles: Visualizing Object Detection Features,” 2013
1IEEE International Conference on Computer Vision, pp. 1-8,
Dec. 2013.

[6] F. Tencé, L. Gaubert, P. De Loor, and C. Buche,
“CHAMELEON: A Learning Virtual Bot For Believable
Behaviors In Video Game,” in GAME’ON, 2012, pp. 64-70.

[7]1 E. Tencé, L. Gaubert, J. Soler, P. De Loor, and C. Buche,
“Stable growing neural gas: A topology learning algorithm
based on player tracking in video games,” Applied Soft
Computing, vol. 13, no. 10, pp. 4174—4184, 2013.

[8] Y. Bengio and P. Frasconi, “An input output HMM architec-
ture,” Advances in neural information processing systems, pp.
427-434, 1995.

[9] J. Soler, “Orion, a generic model for data mining: Application
to video games,” Ph.D. dissertation, UBO, 2015.

[10] M. H. Nguyen, “Segment-based SVMs for Time Series Anal-
ysis,” Ph.D. dissertation, Carnegie Mellon University, 2012.

