
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2013; 24:477–496

Published online 18 June 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1524

RESEARCH ARTICLE

CHAMELEON: online learning for believable behaviors
based on humans imitation in computer games
F. Tence2, L. Gaubert1, J. Soler1,2, P. De Loor1 and C. Buche1*
1 UEB/ENIB/LAB-STICC, CERV, 25 rue Claude Chappe, 29280 Plouzané, France
2 VIRTUALYS, CERV, 25 rue Claude Chappe, 29280 Plouzané, France

ABSTRACT

In some video games, humans and computer programs can play together, each one controlling a virtual humanoid. These
computer programs usually aim at replacing missing human players; however, they partially miss their goal, as they can be
easily spotted by players as being artificial. Our objective is to find a method to create programs whose behaviors cannot be
told apart from players when observed playing the game. We call this kind of behavior a believable behavior. To achieve
this goal, we choose models using Markov chains to generate the behaviors by imitation. Such models use probability
distributions to find which decision to choose depending on the perceptions of the virtual humanoid. Then, actions are
chosen depending on the perceptions and the decision. We propose a new model, called CHAMELEON, to enhance expres-
siveness and the associated imitation learning algorithm. We first organize the sensors and motors by semantic refinement
and add a focus mechanism in order to improve the believability. Then, we integrate an algorithm to learn the topology of
the environment that tries to best represent the use of the environment by the players. Finally, we propose an algorithm to
learn parameters of the decision model. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

believable agent; decision making; video games
Supporting information may be found in the online version of this article.

*Correspondence

C. Buche, UEB/ENIB/LAB-STICC, CERV, 25 rue Claude Chappe, 29280 Plouzané, France.
E-mail: buche@enib.fr

1. INTRODUCTION

To make a human user feel like he or she is inside the
simulation, two criteria have been defined in academic
research: immersion and presence. According to Slater
et al., immersion is an objective criterion that depends on
the hardware and software [1]. It includes criteria based
on virtual sensory information’s types, variety, richness,
direction, and extent to which they override real ones. For
example, force feedback and motion sensing controllers,
and surround sound and high-dynamic range rendering can
improve the immersion. Presence, also known as telepres-
ence [2], is a more subjective criterion. It is defined as the
psychological sense of “being there” in the environment.

As stated in [1], presence partly depends on the match
between sensory data and internal representation. This
match expresses the fact that we try to use world models to
better understand what we perceive and to be able to antic-
ipate [3]. This idea is close to what is called believability in
the arts. Indeed, we can believe in fictional objects, places,
characters, and story only if they mostly fit in our models.

As there are many ways to enhance believability, we
choose to focus on believable virtual characters, also
known as believable agents. Characters often play a major
role in the believability of book and movie stories. How-
ever, unlike book and movie characters, agents in simula-
tion should be able to cope with a wide range of possible
situations without anyone telling them what to do. Instead
of defining manually these behaviors, we propose that our
entities will be able to learn. This learning will be unsu-
pervised and online: the entity will learn while it acts. This
will both remove the burden of parameterizing the mod-
els controlling the characters and increase believability by
having real-time evolution of the behavior.

To be able to achieve the best believability, we want
the agents to be like human-controlled virtual characters.
Indeed, there are no better example of what a believable
behavior is than a human behavior itself. It is this kind of
learning, by example [4] or by imitation [5,6], we want to
use to model believable and autonomous characters.

The way the characters act and learn depends heavily
on the kind of virtual environment they are in. We share

Copyright © 2013 John Wiley & Sons, Ltd. 477

CHAMELEON F. Tence et al.

issues with the video games industry because the game
designers want the players to be immersed in the simula-
tion too. They are trying to be as close as possible to reality,
making rich and complex environments. Researchers can
avoid some technical difficulties (rendering, physics, net-
working, etc.) by using such games. They can then focus
on the making of the entities they want to study [7,8].
Furthermore, video games being made for human beings
offer a real challenge for the entities to be believable. In
addition, video games offer experts of these environments,
human players, give pertinent criticisms on the entities’
behaviors [9].

This paper proposes a decision-making model for
believable agents by using real-time learning by imitation
in video games. In this paper, we first define what believ-
able agents are, give an overview of the kind of models
that drive entities’ behaviors, and focus on models based
on an input–output hidden Markov approach (Section 2).
Then, we propose a new model, CHAMELEON, in order
to make the virtual character more believable and able
of learning by imitation almost all the parameters of the
model (Section 3). Results in a video game are shown
in Section 4. To conclude, we give explanations about
how we want to evaluate the believability of our model
(Section 5).

2. BELIEVABLE BEHAVIORS IN
VIDEO GAMES

2.1. Believability

2.1.1. Definition of Believability.

The notion of believability is highly complex and sub-
jective. To define and understand this concept, we must
look at its meaning in the arts where it is a factor of sus-
pension of disbelief [10]. According to Thomas and John-
ston, two core animators of Disney, believable characters’
goal is to provide the “illusion of life” [11]. Reidl’s defini-
tion is more precise: “Character believability refers to the
numerous elements that allow a character to achieve the
‘illusion of life’, including but not limited to personality,
emotion, intentionality, and physiology and physiological

movement” [12, page 2]. Loyall tries to be more objec-
tive by saying that such a character “provides a convincing
portrayal of the personality they [the spectators] expect or
come to expect” [13, page 1]. This definition is quite close
to one factor of the presence, the match between players’
world model and sensory data.

If we want to apply the believability definition for video
games, things become even more complex. Unlike clas-
sic arts, players can be embodied in a game by the mean
of virtual bodies and can interact. The believability ques-
tion now is, does a believable character have to give the
illusion of life or have to give the illusion that it is con-
trolled by a player? [14]. There can be very important dif-
ferences as even if the video game depicts the real world;
all is virtual, and players know that their acts have no
real consequence.

In this research work, we consider only believable as
giving the illusion of being controlled by a player. Now that
we have defined believability, we then have to find how to
improve it and measure the improvement.

2.1.2. Believability Criteria.

As believability is a broad concept, we need to find
more precise criteria to break this concept down. Accord-
ing to the literature, we listed criteria that were reported
to have an impact on believability. The requirements for
believability are listed in Table 1.

First, the agent must react to the environment and the
other players in a coherent way. This reaction must simu-
late a reaction time similar to a human reaction time. The
agent must also avoid repetitiveness, both in the actions
and in the behavior. It is also necessary that the intention of
the agent can be easily understood by the human players.
Contrary to what is done in most video games, the per-
ception abilities of the agent must be similar to those of
a player. The agent should be able to handle the flow of
time, remembering information from the past and think-
ing ahead, making plans. Finally, the agent has to be able
to evolve, changing its behavior for a more efficient and
believable one. This evolution must be fast enough for the
players to notice it, making them feel they play against an
evolved being.

Table 1. List of the requirements for a character to be believable.

Believability requirement Summary of the requirement References

[B1: Reaction] React to the players and changes in the environment [14,15]
[B2: Reaction time] Simulate a human-like reaction time [14,16]
[B3: Variability] Have some variability in the actions [13, page 18; 14; 16]
[B4: Unpredictability] Surprise the players with unpredictable behavior [17,18]
[B5: Understandable] Have an understandable behavior [18,19]
[B6: Perception] Have human-like perception [20; 21, page 34]
[B7: Planning] Plan actions in the future to avoid mistakes [14]
[B8: Memory] Memorize information [13, page 22]
[B9: Evolution] Evolve to avoid repeating mistakes [5,22]
[B10: Fast evolution] Evolve fast enough for the players to see it

478 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

Table 2. Requirements for the models to make agents express believable behaviors.

Model requirements Summary of the requirement

[M1: Variability] Model variations in the actions and behaviors [B3: Variability]
and [B4: Unpredictability]

[M2: Learning] Is compatible with learning algorithms [B9: Evolution]
[M3: White box] Can be modified and parametrized manually [18] to make the agent

overdo [B5: Understandable]
[M4: Exaggeration] Generate exaggerated behaviors so that players can easily

understand the agent’s objectives [B5: Understandable]
[M5: Planning] Elaborate plans to avoid doing easily avoidable mistakes [B7: Planning]
[M6: Reaction time] Simulate reaction time [B2: Reaction time]
[M7: Memory] Model memory [B8: Memory]

Table 3. Summary of the characteristics of models for the control of believable agents.

Connectionist State transition Production Probabilistic

[M1: Variability]

[M2: Learning]

[M3: White box]

[M4: Exaggeration]

[M5: Planning]

[M6: Reaction time]

[M7: Memory]

2.2. Behavior Models for Believable Agents

2.2.1. Models Criteria.

As there are very few evaluations of the believability of
behavior models, we will try to find the models that ful-
fill most of the requirements for believability. Because of
the context of this study, we will only look at models for
embodied agents in the following study. Those models can
handle interactions with virtual environments and avatars.
Therefore, they all fulfill the requirement [B1: Reaction].
According to the criteria we listed in Section 2.1.2, we list
requirements for the model itself in the Table 2.

2.2.2. Behavior Model in Literature.

In order to fulfill these requirements, we studied the
existing behavior models developed in both the research
and the industry. We grouped behavior models into four
types: connectionist models, state transition systems, pro-
duction systems, and probabilistic models. Connectionist
models are very good at learning but usually have prob-
lems in handling memory and planning. State transition
systems can be easily understood and modified but may not
be very well adapted to learning and planning. Production
systems are quite good for learning, planning, and mem-
ory but make the agent act in a predictable manner. Finally,
probabilistic models are good at variability, learning, and
memory but may show problems with planning (Table 3).

As one of the requirements is that the model is able to
evolve, we had to find adapted learning algorithms. In order
to achieve behavior believability, the best method we found
is imitation learning: the agent learns its behavior by using
observations of one or several players. According to our
definition of believability, it is the best way for the agent
to look like players. Indeed, the goal of imitation learning
is to make the agents act as human players. This learning
method is also much faster than trial and error.

2.3. Model Choice

With previously presented studies in mind, we found out
that probabilistic models based on an input–output hidden
Markov model (IOHMM)† answer most of the require-
ments. In this kind of model, a hidden state is chosen
according to inputs and the previous hidden state, and out-
puts are chosen according to inputs and the current hid-
den state. In most models, hidden states are decisions,
inputs are stimuli, and outputs are actions. Several learning
algorithms have been developed. The best combination is
a Laplace’s rule for the learning of the action distributions

†An IOHMM is a model used to learn to map input sequences
to output sequences (unlike standard hidden Markov models,
which learn the output sequence distribution).

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

479

CHAMELEON F. Tence et al.

Table 4. List of the noticed limitations with Le Hy’s model.

Problems Summary of the problem

[P1: Navigation] The agent has problem navigating in environments.
[P2: Sensors] The sensors are not well organized.
[P3: Expressiveness] The FEC does not provide enough expressiveness for the agent to be believable.
[P4: Scaling] The IP have problem handling many sensors.
[P5: Readability] The IP is not easy to read for novices.
[P6: Learning] The learning algorithm uses strong hypothesis, which may hinder its capabilities.

FEC, fusion by enhanced coherence; IP, inverse programming.

and an expectation–maximization (EM)‡ algorithm for the
learning of the Markovian distributions. An example is pre-
sented in the study by Le Hy et al. [23]. This particular
work will be used to evaluate our proposal.

2.4. Evaluation and Limits of Le Hy’s Model

Now that we have described the details of both the model
and the learning algorithm, we will then try to assess the
believability of the behavior generated by the model. The
only way to evaluate the model is to implement it and to
observe the behavior it produces. In this section, we point
out the weakness of the model in terms of behavior and in
the implication on the implementation.

As the architecture of the model reminds of a finite-state
machine, it is easy to understand and to adjust the param-
eters. The model is modular, allowing the programmer
to add or remove sensors, decisions, and actions without
modifying the code too much.

However, the behaviors produced by the model in the
game can easily be spotted as artificial by casual and regu-
lar players. In [24], we point out several problems of such
models (Table 4).

[P1: Navigation]. The paths the agent uses to go from
one point of the environment to another do not look like
the ones a player would take. This problem does not comes
from the model itself but from the representation it uses for
the environment. Indeed, the agent uses navigation points
placed by the designers of the environment that may not
represent well how players prefer to use the environment.

[P2: Sensors]. Even if it is easy to add sensors to the
model, increasing the number of perceptions makes the
model more and more complex. We found that sensors

‡An EM algorithm is an iterative method to compute the
maximum likelihood estimate of hidden data. The EM iteration
alternates between performing an expectation (E) step and a
maximization (M) step. In the E step, the missing data are esti-
mated given the observed data and current estimate of the
model parameters. In the M step, the likelihood function is max-
imized using the previous estimates (E step) of the missing
data. These parameter estimates are then used to determine
the distribution of the variables in the next E step.

were useful for the choice of the decisions but not for the
choice of actions and vice versa. This is confirmed by the
fact Le Hy uses in his implementation of different values
for the random variables Si depending if they are used
for the choice of decision [25, pages 60–70, in French]
or actions [25, pages 36–54, in French]. This should be
clearly defined in the model.

[P3: Expressiveness]. The fusion by enhanced coher-
ence (FEC) does not provide enough expressiveness: each

Figure 1. An illustration of the problem with FEC: (top) each
distribution (blue line) gives a believable direction to go for a
single attractor (green dot); and (bottom) the FEC does not give
a believable action because the agent may constantly switch
between the two attractors, oscillating constantly. FEC, fusion

by enhanced coherence.

480 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

Table 5. List of the noticed limitations with IOHMM models.

Problems Summary of the problem

[P1: Navigation] The agent has problem navigating in environments.
[P2: Sensors] The sensors are not well organized.
[P3: Expressiveness] The IOHMM models do not provide enough expressiveness

for the agent to be believable.
[P4: Scaling] The IOHMM models have problem handling many sensors.
[P5: Readability] The inverse programming used in IOHMM models is not easy to

read for novices.
[P6: Learning] The learning algorithm uses strong hypothesis, which may

hinder its capabilities.

IOHMM, input–output hidden Markov model.

sensory datum is considered to have the same importance.
For example, if there are two attractors, one straight ahead
and the other behind, the agent may constantly switch
between the two (Figure 1). A real player will choose to
focus on the attractor ahead, supposing the attractors are of
the same strength.

[P4: Scaling]. For the inverse programming (IP) (where
P .Dt jDt�1S t / is computed using P

�
S ti jD

t
�
) to be

valid, all the sensors S ti must be conditionally inde-
pendent given the decision Dt . This hypothesis is very
strong but can work for few sensors. However, the more
the sensors, the higher the chances the hypothesis is
wrong, which can make the model produce unbelievable
behaviors.

[P5: Readability]. The IP technique makes the param-
eters not very understandable [M3: White box]. It is not
natural to ask “What should I see if I take this deci-
sion?” which corresponds to the parameter P

�
S ti

ˇ̌
Dt

�
.

A much more natural way is to express it as P
�
Dt

ˇ̌
S ti

�
,

which corresponds to “What should I decide to do if I
see that?”

[P6: Learning]. In order to make the behavior more
complex and believable, one must add sensors, actions,
and decisions. However, the number of parameters rapidly
becomes intractable for a programmer to specify them
manually. The learning algorithms Le Hy developed are
very simple, and the parameters could be learned much
more precisely given the observations of a teacher’s
avatar [B9: Evolution]. Many hypotheses are used to sim-
plify the computation that may be harmful for the learning.
Also, all the distributions may be learned with one algo-
rithm instead of splitting the learning in two different algo-
rithms: the interfacing between the algorithms would not
be needed any more, and the convergence could be proven
more easily.

Le Hy’s approach allows an easy implementation and a
great flexibility. Sensors and actions can be added without
rethinking all the architecture, by adding only a class and

few parameters. The model is generic and can be adapted
to different virtual environments.

The behaviors generated by the model are, however, too
simple to sustain the illusion of believability very long.
This is due to the inner mechanisms of the model, the
FEC and the IP. The parameters of the model could also
be easily read for non-programmers to be able to mod-
ify the behavior. The model could be refined to express
more complex behaviors without adding too many param-
eters. Finally, the learning could be done by one algorithm,
making the learning more efficient.

The idea of CHAMELEON is to solve parts of problems.
In [24], we point out several problems of such models

(Table 5).

3. CHAMELEON

This section describes four enhancements of classical
IOHMM models to achieve more believable behaviors. In
Section 3.1, we split the sensors into two types represent-
ing two granularities of information: high-level stimuli and
low-level stimuli to clarify [P2: Sensors]. We also define
two kinds of actions, each one associated to a kind of
stimuli. Then, we propose an attention selection mecha-
nism, where the agent selects one high-level stimulus and
one low-level stimulus that answer to the problems [P4:
Scaling] and [P5: Readability]. This mechanism makes
the model more flexible and allows the model to express
more complex behaviors, solving [P3: Expressiveness].
In Section 3.2, we propose to use a modification of the
growing neural gas (GNG)§ algorithm to learn by imi-
tation information the layout of the environment, giving
an answer to [P1: Navigation]. Finally, in Section 3.3,
we propose a revamped imitation learning algorithm to
learn almost all the model parameters, resolving the
problem [P6: Learning].

§The GNG algorithm is an unsupervised incremental clustering
algorithm. Given some input distributions in Rn, GNG incremen-
tally creates a network of nodes, where each node in the graph
has a position in Rn.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

481

CHAMELEON F. Tence et al.

Figure 2. Partial representation of the model depicting the rela-
tion between the decision Dt , the stimuli Ht and Lt , and the

actions Rt and Et .

3.1. Improvements on Input–Output Hidden
Markov Models

3.1.1. Semantic Refinement.

Principle. The problem [P2: Sensors] is related to the
independence between the stimuli and the other random
variables in the model. Decisions and actions can be obvi-
ously independent from some stimuli. Therefore, it is pos-
sible to alleviate the work of the learning algorithm by
specifying from the beginning the independences.

The goal of the semantic refinement is to reduce the
number of parameters by defining a priori some indepen-
dence between random variables. By reducing the number
of parameters and giving the model some knowledge, the
learning should be faster without reducing the expressive-
ness of the model.

The principle of the proposition (Figure 2) is the follow-
ing: instead of considering all the stimuli for each choice
(decision and actions), each choice uses stimuli with dif-
ferent levels of granularity. Global and spatially inaccurate
stimuli, called high-level stimuli (random variables H t

i),
are used for the choice of the decisions and also for actions
that only involve the agent. High-level stimuli can be used
to represent internal information (e.g., hunger, level of hor-
mones, and pain) or global information about the surround-
ings (e.g., temperature, presence of food, and lighting).
Spatially accurate stimuli, called low-level stimuli (random
variables Ltj), are used to perform actions that aim at an
interaction with the environment. We also define two kinds
of action, reflexive (Rti) and external actions (Eti), each

one being a group of dependent actions. Low-level stimuli
can be used, for instance, to represent the exact location of
surroundings objects, their speed, and direction.

Example. We define the random variables and their
values in Table 6 and give a graphical representation
in Figure 3. In order to compare our model with Le
Hy’s, we define the equivalent model by using Le Hy’s
proposition (Figure 4). The independence between some
stimuli, decisions, and actions reduces the number of the
parameters of the model. A more detailed analysis is done
in Section 4.1.1.

Comparison with Le Hy’s Work. Our model can be
seen as a generalization of Le Hy’s model. By stating that
H t D S t , the random variables Lt and Et being unused,
our model is equivalent to Le Hy’s.

Figure 3. Example of an application of the model.
FoodInMouth and Hunger are high-level stimuli, and
FoodPosition is a low-level stimulus. Chew and Swallow
are two reflexive actions. Walk , Turn, and PickFood are

external actions.

Figure 4. Example of a model following Le Hy’s specifications
and aiming at expressing the same behaviors as the example

in Figure 3.

Table 6. Example of a model following the CHAMELEON proposition.

Variable Definition Values

High-level stimuli (H) H1 FoodInMouth .No; Solid; Chewed/
H2 Hunger .Low ; Medium; High/

Low-level stimuli (L) L1 FoodPosition .Close;Far/� .Right;Left/
Reflexive actions (R) R1 Chew .Yes; No/

R2 Swallow .Yes; No/
External actions (E) E1 PickFood .Yes; No/

E2 Walk .Foward; Backward/
E3 Turn .Right; Left/

Decisions (D) D Decision .FindFood; Eat/

482 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

3.1.2. Attention Selection Mechanism.

Principle. Here we present another proposal in order to
reduce the number of parameters: the attention selection
mechanism. This principle is based on the imitation of a
natural phenomenon: when one has to handle a high quan-
tity of information, a solution is to select the most rele-
vant part of this information and to act in accordance with
this partial information. But this selection mechanism is
complex and is not systematic: it depends on one’s “inter-
nal state” such as current aims and constraints, which are
subject to evolution along time. Therefore, we propose
to use a mechanism where, at time t , the agent focuses
on one high-level sensor (H t

g) and one low- level sensor
(Ltj). In order to model this mechanism, we introduce two
random variables G and J , which give respectively the
index of the high-level sensor and the index of the low-
level sensor the agent focuses on. The random variable
G depends on the high-level sensors, so its distribution
has the shape P .Gt jH t /. On the other hand, the ran-
dom variable J depends on the low-level sensors and on
the current decision, so its distribution has the following
shape: P .J t jDtLt /. As a result, the agent will choose its
actions according to some distributions that are defined as
weighted sum of the single distributions: the ones the agent
would refer to in the situation where it would face only one

stimulus. The first gain in this strategy is quite obvious:
one has to learn and store only one distribution by a sensor
(e.g., one distribution by point of interest, instead of a dis-
tribution that would handle any number and kind of points
of interest). Moreover, the conditional distributions of the
random variables G and J may as well be too complex, so
we propose to express these distributions as follows:

P
�
Gt D i

ˇ̌
H t

�
D

�i
�
H t
i

�
X
n

�n
�
H t
n

� (1)

P
�
J t D j

ˇ̌
Dt ; Lt ; Kt

�
D

�
�
Dt ; Ltj

�
X
m

�
�
Dt ; Ltm

� (2)

The higher the values of � and �, the more likely the agent
will focus on the associated sensor. This reduces greatly
the number of parameters still giving the agent a mecha-
nism to focus only on one sensor. The model uses a very
simple algorithm (Figure 5).

Example. A concrete example is given in Figure 6.

Figure 5. Algorithm of the model. It is possible to choose the way the value are picked: randomly following the distribution, using the
maximum value in the distribution, and so on.

(a) (b)

Figure 6. (a) Summary of the relation between the random variable of the model: in green, the inputs (sensory data); in red, the
outputs (actions); and in blue, the attention variables. (b) Whole model applied to the example defined in Section 3.1.1.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

483

CHAMELEON F. Tence et al.

Comparison with Le Hy’s Work. Before we turn to
the next section, we present a relevant comparison with
a model developed by Le Hy. The first mechanism used
by Le Hy is the IP, where P .Dt jDt�1S t / is computed
using P

�
S ti jD

t
�
, assuming that all sensors are indepen-

dent knowing the decision. This hypothesis may be clearly
wrong depending on the chosen sensors; moreover, the
more sensors used, the higher the chances of the hypoth-
esis to be wrong. The second mechanism is the FEC. This
technique suffers some simple problems: it makes use of
probability distributions but handle them in total opposi-
tion with their natural properties (by mean of products of
distributions functions that share a common lower positive
bound). The main consequence of this technique is, in the
end, to consider something similar to a mean of probability
distributions, which is easily and rigorously achieved with
the sum of random variable over a random index (this is in
scope of the mechanism we propose). From this point of
view, it is noticeable that the mechanism we propose gives,

but not only, a clear and rigorous formal basis to these kind
of ad hoc computations.

3.2. Learning the Topology: Stable
Growing Neural Gas

To achieve the best believability, we want those nodes to
be learned by imitation of a human player instead of being
placed a priori by a designer. This work has been done
in [26] where nodes and a potential field are learned from
humans playing a video game. The agent is then using this
representation to move in the game environment, following
the field defined at each node. To learn the position of the
nodes, Thurau et al. used an algorithm called GNG.

The GNG [27] is a graph model that is capable of incre-
mental learning. Each node has a position in the environ-
ment and has a cumulated error that measures how well
the node represents its surroundings. Each edge links two

Figure 7. Algorithm used to learn the topology of the environment by the stable growing neural gas.

484 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

nodes and has an age that gives the time it was last acti-
vated. This algorithm needs to be omniscient, because the
position of the imitated player, the demonstrator, is to be
known at any time.

The principle of the GNG is to modify its graph,
adding or removing nodes and edges and changing the
nodes’ position for each input of the demonstrator’s posi-
tion. For each input, the closest and the second clos-
est nodes are picked. An edge is created between those
nodes, and the closest node’s error is increased. Then,
the closest nodes and its neighbors are attracted towards
the input. All the closest node’s edges’ age is increased
by 1, and too old edges are deleted. With each � input,
a node is inserted between the node with the maximum
error and its neighbors having the maximum error. At
the end of an iteration, each node’s error is decreased
by a small amount. The graph stretch and grow to cover
the whole space where the player has been monitored
to go.

The model has been modified (Figure 7) to be able to
learn continuously on a player without growing indefi-
nitely but being able to grow if the teacher (in our case,
the player) begins to use a new part of the environment.
We called this new version stable GNG (SGNG). Instead
of inserting a new node each � input, a node is inserted
when a node’s error is superior to a parameter Err. As each
node’s error is reduced by a small amount Err for each
input, the SGNG algorithm does not need a stopping crite-
rion. Indeed, if there are many nodes, which represent well
the environment, the error added for the input will be small,
and for a set of inputs, the total added error will be dis-
tributed among several nodes. The decreasing of error will
avoid new nodes to be added to the GNG, resulting in a sta-
ble state. However, if the player who serves as an example,
the demonstrator, goes to a place in the environment he or
she has never gone before, the added error will be enough
to counter the decay of the error, resulting in new nodes to
be created.

The nodes learned by this model can be used directly
by the model as low-level stimuli. Indeed, they represent
precise information, which will be particularly important
for the choice of motion actions. However, the information
given by the edges cannot be used, as it denotes only prox-
imity between nodes and not a path between them. Two
nodes may be linked by an edge because they are close
with an obstacle between them.

3.3. Learning the Parameters of the Model
with Expectation–Maximization Algorithm

In our model, probabilities computed by the backward pro-
cedure give the chances of taking a certain decision at t ,
knowing what the demonstrator did at t C 1; : : : ; T . This
information should not be lost (for instance, if the demon-
strator is looking for something specific, the learning algo-
rithm cannot know what it is until it is picked up). As a
consequence, it seems wiser to learn on a whole sequence

of observations (from time 0 to time T) instead of using an
incremental version.

Expectation–Maximization Principle. In our case,
the algorithm gathers the values of the stimuli Ltj and H t

i

and the actions Rt and Et at each time step. The values of
the hidden states I t , J t , and Dt are not known; thus, the
data are incomplete. We will apply an EM algorithm [28]
to be able to learn the model parameters.

The following notations are adopted:

� T is the length of the sequence of observation used
for the learning;

� ADA1;:::;T the total sequence of observed actions;
� S D S1;:::;T the total sequence of observed stimuli;
� QDQ1;:::;T the total sequence of hidden states; and
� ˆ is the set of model parameters.

Our goal is to find the best model parameters, ˆ�, such
that the likelihood, P .AjS; ˆ�/, is maximal. This means
that we want to find the parameters of the model that are
most likely to generate an observed sequence given the
sensory information: if the model were in place of the
observed player, it would most likely generate approxima-
tively the same actions. As we do not have any information
about the hidden variables (Q), we choose to use an EM
to find a local maximum. The idea is to find iteratively a
ˆnC1 such that P .AjS; ˆnC1/� P .AjS; ˆn/.

Finding a Sequence of Observations. During the
introduction of the algorithm, we defined the sequences of
observation A and S of length T . They are the sequences
of what the teacher does and perceives. These sequences
allow the model to estimate the probability of the hid-
den states. In our games, avatars “die” disappearing from
the environment and “resurrect” reappearing in a random
place. Therefore, a sequence is the actions and stimuli from
the “resurrection” to the “death” of the teacher’s avatar.
Such sequences usually last from 10 s to 5 min, which is
not too long for the algorithm. A last problem concerning
the sequences had to be solved: the teacher has a reaction
time. Among all the solutions we tried, the most simple
worked the best. Instead of associating the actions at t to
the stimuli at t , we use the actions at t C treac. The actual
value of treac is discussed in Section 4.3.1.

Parameters Initialization. We choose to stick to the
simplest method for the moment: the random initializa-
tion. Each parameter is initialized to a random value, then
they are normalized for the sum of probability distributions
to be equal to 1. It allows the algorithm to cover many
possible solutions at the cost of convergence time.

Stopping Criterion. The algorithm needs a stopping
criterion, based on the quality of the current set of param-
eters ˆn. As the algorithm converges towards a local
maximum, we do not know a priori the value of the

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

485

CHAMELEON F. Tence et al.

likelihood function at this maximum. When the value of
Q.ˆnC1jˆn/ converges, it increases, so that the increase
is smaller and smaller at each iteration of the algo-
rithm. We based the stopping criterion on this increase:
if Q.ˆnC1jˆn/ � Q.ˆnjˆn�1/ < w, the algorithm is
stopped, and ˆnC1 is considered to be the solution.

Expectation–Maximization Online. Like all the EM,
our algorithm is offline, which is contrary to our objective.
Indeed, the algorithm gives a set of parameters that only
satisfies the observed sequence. However, because we have
short learning sequences, we can learn from them one after
another, merging the final resulting set of parameters to a
global one, ˆg .

Results. Our learning algorithm allows to learn almost
all the parameters by imitation. The attention functions �i
and �j are not yet learned. Our algorithm is much slower
than Le Hy’s, but by avoiding simplistic hypothesis, should
give much more accurate results (Section 4.3.2).

4. RESULTS

In this section, we present how we adapted our model
to the video game UT2004 and the result for each of
the four proposed modifications. The semantic refine-
ment of the model reduces the number of parameters
for the model, making the learning faster and the model
clearer (Section 4.1.1). The attention selection mecha-
nism allows the agent to express behavior that cannot be

expressed by most IOHMM models, as Le Hy’s model
(Section 4.1.2). The SGNG makes the agent able to adapt
rapidly to unknown environments by observing multiple
teachers (Section 4.2). Finally, the imitation learning algo-
rithm allows the agent to evolve rapidly towards a more
believable behavior (Section 4.3).

4.1. Improvements on Classical
Input–Output Hidden Markov Models

4.1.1. Semantic Refinement.

The definition of high-level and low-level stimuli allows
the model to reduce the parameters by

0
@
NLY
jD1

Lj

1
A jDj2C

0
@
NHY
iD1

jHi j

NEX
fD1

jEf j

C

NLY
jD1

jLj j

NRX
uD1

jRuj

1
A jDj (3)

So the more complex the model, the more favorable is the
semantic refinement.

In order to study the consequences of the semantic
refinement on a concrete example, we will use our appli-
cation. The definition of each random variable and the
number of values they can take are given in Table 7.

With this example, we can now study the number of
values needed for the definition of Le Hy’s model and
CHAMELEON. In order to focus only on the influence of

Table 7. Definition of each random variable used in the model applied to the game UT2004.

Variable Definition Number of values

High-level stimuli (H) H1 Life 3
H2 NumberOfEnemies 4
H3 CurrentWeapon 14
H4 CurrentWeaponAmmunition 4
H5 TakeDamage 2
H6 WeaponsInInventory 70

Low-level stimuli (L) L1 Player 405
L2 Weapon 45
L3 Health 45
L4 NavigationPoint 72
L5 RayImpact 5

Reflexive actions (R) R1 ChangeWeapon 12

External actions (E) E1 Fire 3
E2 Jump 3
E3 Pitch 3
E4 Yaw 5
E5 Walk 3
E6 Lateral 3

Decisions (D) D Decision around 10

486 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

the semantic refinement of the stimuli, we will not con-
sider for now the mechanisms to decrease the complexity
of the models: FEC and IP for Le Hy’s model and attention
selection for CHAMELEON.

In our application, the gain is worthwhile, the decrease
of the number of parameters being between 10% and
92% compared with a model without semantic refine-
ment is show in Figure 8 and Table 8. In the game
UT2004, the number of states, which approximatively cor-
responds to decisions in our model, is around 10. For 10
decisions, the reduction of the number of parameters is
around 85%.

The semantic refinement of the model, clearly defin-
ing high-level and low-level stimuli and the associated
actions, allows an important reduction of the number of
values needed for the definition of the probability distribu-
tions. This reduction will make the learning faster because
less knowledge is to be learned, the independence between
variables being already specified. This should allow the
agent to adapt even faster answering to the requirement
[B10: Fast evolution].

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 5e+11

 2 4 6 8 10 12 14 16 18 20
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
um

be
r

of
 p

ar
am

et
er

s

R
ed

uc
tio

n
in

 %

Number of decisions

Le Hy
Chameleon

Reduction in number of parameters

Figure 8. Number of parameters for our application of the
model in UT2004. The IP and FEC for Le Hy’s model and atten-
tion mechanism for CHAMELEON are not taken into account. The
reduction is given as compared with Le Hy’s model. IP, inverse

programming; FEC, fusion by enhanced coherence.

Table 8. For each hypothesis, the number of values for the
definition of the probability distributions with 10 decisions.

Number of parameters

Full dependence between
random variables 3� 1018

Independence of actions 8:6� 1015

Independence of actions and
semantic refinement 6� 1010

The semantic refinement allows a noticeable reduction of the
number of parameters. The independence of the actions is intro-
duced in Le Hy’s work.

4.1.2. Attention Selection Mechanism.

Number of Parameters. The difference in the number
of parameters for the previous example is given in Table 9
and in Figure 9. All the modifications we proposed
decrease the number of parameters by 36% to 40% com-
pared with that by Le Hy’s model. However, the results
for this example cannot be generalized for all the prob-
lems. Indeed, the semantic refinement allows an important
decrease in the number of parameters, whereas the atten-
tion selection makes the number of parameters increase.
There may be some applications of our model where more
parameters are needed than Le Hy’s.

Expressiveness. Le Hy’s FEC cannot express several
simple behaviors. In our example (Figure 10), if the attrac-
tors are navigation points and the actions are forward or
backward, the agent will randomly go back and forth,
barely moving because the “expected value” is to stay still.
There is also another problem: if a random distribution is

Table 9. For each hypothesis, the number of values for the
definition of the probability distributions with 10 decisions.

No. of
parameters

Full dependence between
random variables 3� 1018

Independence of actions 8:6� 1015

Independence of actions and
semantic refinement 6� 1010

Le Hy: independence of actions and
IP and FEC 2:2� 105

CHAMELEON: independence of actions
and semantic refinement and attention 1:4� 105

Our model totals 36% less parameters than Le Hy’s model. The IP
and FEC are introduced in Le Hy’s thesis and the attention selection
mechanism.
IP, inverse programming; FEC, fusion by enhanced coherence.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 2 4 6 8 10 12 14 16 18 20
 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

N
um

be
r

of
 p

ar
am

et
er

s

R
ed

uc
tio

n
in

 %

Number of decisions

Le Hy
Chameleon

Reduction in number of parameters

Figure 9. Number of parameters for our application of the
model in UT2004. The reduction is given compared with that

in Le Hy’s model.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

487

CHAMELEON F. Tence et al.

Behavior : exploration
Le Hy Attention

(a) (b)

Figure 10. (a) An illustration of the problem with FEC: it does
not give a believable action because the agent may constantly
switch between the two attractors, oscillating constantly. (b)
The attention selection mechanism produces a better distribu-
tion in term of believability: the attention gives a believable
action because the agent focus on the attractor ahead instead
of switching between the two attractors like the FEC would do.

FEC, fusion by enhanced coherence.

0 for an action, the product is also 0. For our example,
one could set the value for going backward when seeing
an attractor in front to 0 and vice versa. In this case, the
FEC cannot be applied because the product would be 0 for
all the probabilities.

4.2. Learning the Environment: Stable
Growing Neural Gas

Results 2D/3D. We trained two SGNG on two different
maps. The first one is a simple map, called Training Day;
it is small and flat, which is interesting to visualize the
data in two dimensions. The second one, called Mixer, is
much bigger and complex with stairs, elevators, and slopes,
which is interesting to see if the SGNG behaves well in
three dimensions. The results are given in Figure 11.

Similarity with Manually Placing the Navigation
Points. To study the quality of the learned topology, we
first chose to compare the SGNG’s nodes with the naviga-
tion point placed manually by the map creators (Figure 12).

Of course, we do not want the SGNG to fit exactly those
points, but it gives a first evaluation of the learned represen-
tation. The two representations look alike, which indicates
that the model is very effective in learning the shape of the
map. However, there are zones where the SGNG’s nodes
are more concentrated than the navigation points and other
zones where they are less concentrated. We cannot tell now
if it is a good behavior or not, as we should evaluate an
agent by using this representation to see if it navigates well.
Even in the less-concentrated zones, the nodes are always
close enough to be seen from one to another, so it should
not be a problem.

Time Evolution. To study the time evolution of the
SGNG’s characteristics, we introduce a distance measure:
the sum of the distance between each navigation point and
its closest node. We also study the evolution of the number
of nodes because we do not want the SGNG to grow indefi-
nitely. Figure 13(a) shows this two measures for the simple
and the complex maps. For the simple map, the SGNG
reached its maximum number of node and minimum error
in approximatively 5 min of real-time simulation. For the
complex map, it takes more time, about 25 min, but results
at 12 min are quite good. Those results show that it is
possible to have an agent learn during the play.

Learning with Multiple Professors. The SGNG can
handle inputs from multiple professors. Figure 13(b) shows
the distance and number of node for an SGNG trained on
one professor and for an SGNG trained on four professors.
The learning with four professors is, as expected, faster:
about 3 min for the distance to stabilize instead of 5 min
for one professor. It is interesting to note that the learning is
not four times faster, but the gain is still important. Learn-
ing with multiple professors seems to give an SGNG with
less variation during the learning. The gain has, however,
a small drawback: the number of nodes is a little superior
for multiple professors. It may be because professors are
scattered in the environment instead of a unique professor
following a path.

1000

1500

2000

2500

3000

-2500 -2000 -1500 -1000 -500 0 500

po
si

tio
n

(y
)

position (x)

SGNG edges
SGNG nodes

0
1000

2000
3000

4000 -1000
0

1000
2000

3000

-600
-400
-200

0
200

SGNG edges

x
y

z

SGNG nodes

(a) (b)

Figure 11. Result of a Stable Growing Neural Gas (SGNG) learned (a) from a player for a simple map and (b) from a player for a
complex map.

488 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

Figure 12. Comparison of nodes learned by the stable growing
neural gas (GNG) with the navigation points placed manually by

the game developers.

Comparison: Growing Neural Gas/Stable Growing
Neural Gas. Figure 14 shows a comparison between
the GNG and the SGNG, using three measures during the
learning for the simple environment. Sensitivity measures
how much the SGNG successfully represents the part of
the environment the teacher used, which can be seen as
true positives. The higher the value, the better the SGNG
is. Specificity measures how much the SGNG did not rep-
resent the part of the environment the teacher did not use,
which can be seen as true negatives. The higher the value,
the better the SGNG is. We also study the number of nodes
the SGNG has because we do not want the SGNG to have
either too many or too few nodes.

4.3. Learning the Parameters of the Model
with Expectation–Maximization Algorithm

In this section, we first study the influence of the data
given to the EM: the observation sequences and the
model parameters (Section 4.3.1). Then, we study the
convergence of a learning on one sequence and multiple
sequences (Section 4.3.2). Finally, we try to evaluate the
resulting behaviors with different objective and subjective
measures (Section 4.3.3).

4.3.1. Impact of the Expectation–Maximization

and Parameters on the Results.

Impact of the Teacher’s Reaction Time. When the
teacher is observed by the learning algorithm, a snapshot
of the values of the stimuli and the actions is taken at each

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

C
um

ul
at

ed
 d

is
ta

nc
e

to
 n

av
ig

at
io

n
po

in
ts

time (s)

N
um

be
r

of
 n

od
es

(a)

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000
0

5

10

15

20

25

C
um

ul
at

ed
 d

is
ta

nc
e

to
 n

av
ig

at
io

n
po

in
ts

N
um

be
r

of
 n

od
es

time (s) (b)

Figure 13. Time evolution of the cumulated distance to naviga-
tion points (a) defined manually and (b) the SGNG’s nodes and

the SGNG’s number of nodes.

Figure 14. Comparison: growing neural gas (GNG)/stable grow-
ing neural gas (SGNG).

time step t . However, the teacher’s actions at time t may
not reflect a reaction to the stimuli at time t . We must then
take into account the reaction time of the teacher, allowing
our model to find the relation between stimuli and actions,
which are actually related.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

489

CHAMELEON F. Tence et al.

The reaction time may not be the same between indi-
viduals and may also vary for one individual over the
time. However, we find that the simplest solution, using
a constant reaction time for all the teachers, give the best
results. Other methods were tried, such as associating the
more likely action to the stimuli according to the current
model parameters or aligning variations in both stimuli
and actions, but they did not make the learning algorithm
converge towards parameters more likely to generate the
observations. The choice of the reaction time for a game
has to be done once and for all using a graph like Figure 15.

According to Figure 15, the reaction time of a player
is very variable. The reaction time of 300 ms gives the
maximum likelihood, but the difference is not very impor-
tant with the likelihood found for reaction times between
400 and 800 ms. For now, we will use a reaction time of
300 ms in the following experiments, but a variable time of
reaction could improve the results.

In order to show that the results of the learning are
really impacted by the reaction time, we studied the vari-
ations of the log-likelihood depending on the reaction
time for a UT2004 agent teacher (all the other experi-
ments are done with human teachers). Figure 15 shows
that the best log-likelihood are achieved for reaction times
between 0 and 200 ms. These results are coherent with
the fact that UT2004 agents do not model the reaction
time. It also shows that the players’ behaviors are much
more complicated to learn, their reaction time being much
more variable.

Impact of the Number of Decisions. The mech-
anism of decisions allows the agent to produce logical
sequences of actions, to make actions according to its
needs, and to simulate a short-time memory. As expected,
Figure 16 shows that the more the decisions, the better
the model can express the observed behaviors. Indeed,
the model is more complex and can make the agent
behave in a more subtle way. However, as the number

-992

-990

-988

-986

-984

P
la

ye
r

lo
g-

lik
eh

oo
d

-982

-980

0 0.5 1 1.5 2

Reaction time (s)

Player Mean log-likelihood
UT2004 agent log-likelihood

U
T

20
04

 a
ge

nt
 lo

g-
lik

el
ih

oo
d

-620

-618

-616

-614

-612

-610

-608

Figure 15. Mean log-likelihood of the final result after learning
on 105 different sequences of observations of the behavior of a
player and 100 different sequences of observations for a UT2004
agent. The reaction time varies from 0 to 2 s, and the model

has 10 decisions.

-1300

-1250

-1200

-1150

-1100

-1050

-1000

-950

-900

 0 2 4 6 8 10 12 14 16 18 20
 0

 50

 100

 150

 200

 250

 300

 350

Lo
g-

lik
el

ih
oo

d

S
ec

on
ds

Number of decisions

Mean log-likelihood
Mean time to converge

Figure 16. Mean log-likelihood of the final result and time
to converge for 105 different sequences of observations. The
number of decisions varies from 1 to 20 with a fixed reaction

time of 300 ms.

of parameters increase with the number of decisions, the
time needed for the algorithm to converge is longer. Too
many decisions should be avoided to make the learn-
ing fast and fulfill the requirement [B10: Fast evolu-
tion]. According to the results, increasing the number
of decisions over 10 does not improve the results in a
significant way. We remind the reader that agents origi-
nally coded in the UT2004 game use approximatively 10
main states.

4.3.2. Characteristics of the

Expectation–Maximization.

According to the two previous studies, we will use 10
decisions and a reaction time of 300 ms for the following
experiments. The function Q is the function that is opti-
mized by the EM algorithm. The higher it is, the higher
is the log-likelihood. Figure 17 shows the value of the
total log-likelihood for each iteration of the EM. The first
iterations make the value increase sharply; after 10 itera-
tions, the increase becomes very slow, stabilizing between
�500 and �300. As the value is a log, this likelihood is
very small. We can also see that some learnings finish
faster, in about 30 iterations, whereas others take around
100 iterations.

4.3.3. Resulting Behaviors.

The final goal of the four propositions (semantic refine-
ment, attention selection, learning of the environment, and
learning of the behavior) is to make the agent produce
believable behaviors. In the following experiments, the
model learned on one unique teacher using 10 decisions.
It also considered that the teacher had a constant reac-
tion time of 300 ms. The results given are after learning
on the teacher during 40 min. The teacher played against
a UT2004 agent in the environment named in the game
Training Day.

490 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0 20 40 60 80 100 120

Lo
g-

lik
el

ih
oo

d

Iteration

Log-likelihood

Figure 17. Time evolution of the total log-likelihood for 20 learn-
ings on sequences of the same length. Each learning starts the

same initial distributions.

Study of the Distributions. Before analyzing the
whole behavior, we can study the distributions of actions
to see if they really look like the ones in [25, page 47, in
French]. For the same decision, the distributions shown in
Figure 18 confirm that the agent does not react in the same
way for different positions of the same object. In the exam-
ple, if a weapon is at the left, close, and of the same height
as the agent (left figure), the agent will go forward, move
laterally left, and not turn. If the weapon is at the right and
of the same height (right figure), the agent will probably
not turn, go forward, and move laterally right. In the two
cases, the agent will look in the direction of the horizon,
which is the direction of the weapon in terms of pitch. In
the two cases, the agent will surely pick the weapon.

For the same stimulus but different decisions, the agent
may act differently. Figure 19 shows the distributions for an
enemy player on the right of the agent, moving to the right,
of the same height, and at an average distance for two dif-
ferent decisions. In the first decision (left figure), the agent

moves forward and turns right in order to aim at the enemy
and reduce the distance to the player. In the second deci-
sion, the agent turns also right but may move forward or
backward and move laterally to the left in order to aim at
the enemy but keep the same distance to the player. In the
two cases, the agent looks at the direction of the horizon,
as it is the direction of the enemy.

The study of the movement distributions shows that
some knowledge is assimilated by the model parameters.
The role of the decision becomes obvious with differ-
ent tactics being used according to the state of the agent.
However, some distributions do not represent a believable
behavior at all. The reasons can be many: problem with
reaction time, bad attention values, and so on.

Signatures. In a previous study [29], we presented a
method to spot differences in the behavior of players and
agents. Although it is not proved to be an indicator of
believability, it may be used to spot non-believability. The
idea is to monitor the movements of avatars and to extract
some statistics. These statistics are the signatures of the
behaviors; similarities can be spotted between agents and
between players. The most important information is the
differences spotted between players and agents, which
often reveal problems in the behavior of the agent. It is
also possible to represent the distance between the signa-
tures, visualizing the similarities in a more natural way.
This distance allows the measure to take into account
that turning 80° right and 90° right is almost the same
but 90° right and 90° left is very different. So to visual-
ize the distance, we represent the signatures on a plane
by using the Multidimensional Scaling (MDS) method.
Both the Earth Mover’s Distance (EMD) and MDS are
detailed in [29]. The idea is that close (Euclidean dis-
tance) representations of the signatures in the MDS are
close in the EMD distance and thus are similar, the con-
trary being also true. As it is only a question of relative
distance to the other, the graphs do not have any tics
or values on the axis. In order to have a more complete

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Yaw Run & lateral Pitch

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Figure 18. Two distributions of movement actions for the same decision and same kind of stimuli but different values. The left graph
is for a stimulus representing a weapon on the left of the agent and very close. The right graph is for a stimulus representing also a

weapon but is on the right of the agent and is also very close. The weapon is about the same height as the agent.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

491

CHAMELEON F. Tence et al.

D = d1 D = d2

Run & lateralYaw

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Run & lateralYaw

0 0.3 0.6 0.9

0

4 5

9 0

135

180

225

270

315

Figure 19. Two distributions of movement actions for the same stimulus but different decisions. The two graphs are for stimulus
representing an enemy player, right of the agent, moving to the right of the agent, and at an average distance.

Velocity relative to direction

Direction change Velocity change

Chameleon

Player

UT2004

Le Hy

Figure 20. EMD between the signatures represented using the MDS for one CHAMELEON, one Le Hy agent, seven different players,
and nine UT2004 agent, each one with a different skill level. The correlation factors for the MDS for all the representations are very

high (>0:98).

study of the signatures, we represent the signatures for the
CHAMELEON and the Le Hy agent as well as seven differ-
ent players and nine UT2004 agents, each with a different
skill level.

For the first graph (Figure 20, top), the UT2004 agents
are widespread. The medium-skilled ones are close to the
players. Le Hy agent is pretty far from the players and
CHAMELEON is not very far but not in the “cloud” of the
players. That means it may be taken for a player but not an
average one. In the second graph (Figure 20, bottom left),

the players are quite widespread, and the UT2004 agents
are still quite close. Le Hy agent is very far from the players
and CHAMELEON is a bit far also. Finally, for the last graph
(Figure 20, bottom right), Le Hy agent is very far from
the players, CHAMELEON is quite far, and the agents are
not very far but can be clearly separated from the players.
To conclude, it appears that some UT2004 agents are the
closest to the players, then comes CHAMELEON and then
Le Hy’s agent. The fact that the agents from the game are
this close is because character designers used much time

492 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

improving the way their agents move. However, it may not
apply to the behaviors.

It seems that CHAMELEON managed to perform bet-
ter than a particular IOHMM (Le Hy’s agent). Because
the discretization of the actions and the interface between
the game and the model can be greatly improved, UT2004
agents perform better than CHAMELEON. As all the details
of the agent’s behavior are important, this should be
improved on CHAMELEON in order to be able to fool the
players into thinking CHAMELEON is another player.

5. CONCLUSION

5.1. Bottleneck

This paper aims at designing a behavior model for the con-
trol of believable characters in video games. The character
is controlled by a computer program we call an agent. We
define a believable agent as a computer program able to
control a virtual body in a virtual environment so that other
human users in the environment think the virtual body is
controlled by another human user. As this definition is
pretty vague, we define 10 requirements for a character
to be believable, on the basis of previous experiments and
work: reaction, reaction time, variability, unpredictabil-
ity, understandability, human-like perceptions, planning
abilities, memory evolution, and fast evolution.

5.2. Contribution

In order to fulfill these requirements, we studied the exist-
ing behavior models developed both in the research and
the industry. We grouped them into four types: connection-
ist models, state transition systems, production systems,
and probabilistic models, each one having its strengths and
weaknesses. As one of the requirement is that the model is
able to evolve, we had to find learning algorithms for the
behavior model. We found out that imitation is the best way
to believability. With these studies in mind, we found out
that the behavior model developed using IOHMM, as Le
Hy’s model, answers to most of the requirements but has
still some limitations.

In this paper, we proposed four modifications or replace-
ments to classical IOHMM models. We first tried to reduce
the number of parameters in the model with a seman-
tic refinement. Then, we replaced the two mechanisms to
break the complexity of the probability distributions by
an attention selection mechanism. This avoids the agent
from switching constantly between stimuli. We added to
the model the ability to learn by imitation the layout of
environments with a model named growing neural
network. Finally, we totally revamped the learning algo-
rithm with an EM method.

The proposition makes the model able to learn how to act
in the environment rapidly. Stimulus–action associations
are made for the agent to look like a human player. How-
ever, the learning also learned wrong associations, which

destroys the illusion of believability. According to our stud-
ies, our model performs better than Le Hy’s but work is still
to be done on the model to achieve the final goal.

5.3. CHAMELEON: A Novel Contribution for
a Character to be Believable

As a conclusion, the propositions allowed the agents con-
trolled by our model to fulfill the requirements listed in the
beginning. The model and the learning algorithm make the
agent react to stimuli often in a human-like fashion [B1:
Reaction] and can simulate delay in the reaction [B2:
Reaction time]. The probabilities allow the agent to ful-
fill [B3: Variability] and [B4: Unpredictability]. However,
learned distributions can make the movements choppy, so
it can be necessary to modify the way the model picks deci-
sions. The agent can adapt to new environments and rules
with the GNG and the EM [B9: Evolution] with results
converging very rapidly [B10: Fast evolution]. The atten-
tion selection mechanism makes the behavior of the agent
reflect more human-like perceptions [B6: Perception] and
more understandable for players [B5: Understandable].
Finally, the agent can “remember,” as its choice of decision
is based on the previous one [B8: Memory]. This informa-
tion is, however, very limited. Indeed, it often does not give
enough information for the agent to react to stimuli that are
not visible any more.

5.4. Future Work

The next step is to evaluate our work. As believability is
subjective, evaluation is a critical and complex step. Even
if it was not intended to, Turing’s test is still considered
as a reference for believability evaluation [30]. In its stan-
dard interpretation, a judge must chat with a human and
a machine by using only text. If, after a certain amount
of time, the judge cannot tell which one is artificial, the
machine is said to be intelligent. This test’s goal was to
assess intelligence, but it has been much criticized [31,32].
This critique, however, does not apply to believability, and
it is even a very good basis for assessing believability as
we defined earlier.

There are many parameters for believability evaluation
methods [8,14,33]. The first one is to cast or not to cast
doubt on the nature of the presented character(s). This
choice is often linked with mixing agents and humans so
that the judges assess real humans’ believability too. This
can be useful to avoid bias induced by prejudices and to
have a reference: humans usually do not score a perfect
believability. Another parameter is the number of questions
and answers. Turing’s test features only one question and a
yes/no answer, whereas other tests feature many questions
and scales to answer. The former choice may be too restric-
tive, whereas the latter may result in too much undecided
answer to “beat” the test. Another problem is the com-
putation of the overall believability score, which, in case
of multiple questions, may give experimenters too much

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

493

CHAMELEON F. Tence et al.

influence on the results. To add more objectivity, it is pos-
sible to have relative scoring instead of absolute: the score
given to an example can answer to “Is example A better
than example B?” It is also necessary to decide if judges
are players or only spectators. Whereas players can actively
test evaluated characters, spectators are more focused on
them and can notice much more details in the behav-
iors. Finally, the choice of the judges is really important.
Cultural origins [8] and level of experience [34] may have
a noticeable impact on believability scores.

Moreover, we plan to design specific experiments in
order to evaluate online both the learning process and the
believability of our model (and of similar ones). This work
will be done in collaboration with psychology specialists.
The principle is quite simple but should be particularly
relevant in our context: we aim to design testing servers
embedded with a learning artificial character, controlled
by our CHAMELEON algorithm. Any human player who
participates to the test and connects to the server has to
play according to specific rules or scenarios designed to
evaluate any part of the learning process and of the believ-
ability of our model. Once the player ends his session,
he must answer a few questions, also precisely designed,
that will evaluate how believable the other player is (the
artificial one). The specific part of our experiment is that
the artificial player will learn only during the tests, when
human players/testers will participate. Thus, we will be
able to plot the evolution of the believability of our model
as more and more players will have participated, even
many times each; we evaluate both the efficiency of the
learning algorithm and the efficiency of the model itself to
produce believable behaviors. We believe that this could
produce a very versatile, informative, and autonomous
evaluation workbench.

REFERENCES

1. Slater M, Usoh M, Steed A. Taking steps: the influence
of a walking technique on presence in virtual reality.
ACM Transactions on Computer-Human Interaction
(TOCHI) 1995; 2(3): 201–219.

2. Steuer J. Defining virtual reality: dimensions deter-
mining telepresence. Journal of Communication 1992;
42(4): 73–93.

3. Held R, Durlach N. Telepresence, time delay and adap-
tation. Pictorial Communication in Virtual and Real
Environments, chapter 14, 1991: 232–246.

4. Del Bimbo A, Vicario E. Specification by example of
virtual agents behavior. IEEE Transactions on Visual-
ization and Computer Graphics 1995; 1(4): 350–360.

5. Gorman B, Humphrys M. Imitative learning
of combat behaviours in first-person computer
games, In Proceedings of CGAMES 2007, the 11th
International Conference on Computer Games: AI,
Animation, Mobile, Educational & Serious Games, La
Rochelle, France, 2007.

6. Bauckhage C, Gorman B, Thurau C, Humphrys M.
Learning human behavior from analyzing activities
in virtual environments. MMI-Interaktiv 2007; 12:
3–17.

7. Cavazza M, Charles F, Mead S. Interactive sto-
rytelling: from AI experiment to new media. In
ICEC ’03: Proceedings of the Second International
Conference on Entertainment Computing. Carnegie
Mellon University, Pittsburgh, PA, USA, 2003; 1–8.

8. Mac Namee B. Proactive persistent agents: using
situational intelligence to create support characters
in character-centric computer games, Ph.D. Thesis,
Trinity College Dublin, 2004.

9. Silverman BG, Bharathy G, O’Brien K, Cornwell J.
Human behavior models for agents in simulators and
games: part ii: gamebot engineering with PMFserv.
Presence: Teleoperators and Virtual Environments
2006; 15(2): 163–185.

10. Bates J. The nature of characters in interactive worlds
and the Oz project. Technical Report CMU-CS-92-
200, School of Computer Science, Carnegie Mellon
University, 1992.

11. Thomas F, Johnston O. Disney Animation: The Illusion
of Life. Abbeville Press, New York, USA, 1981.

12. Riedl MO, Young RM. An objective character believ-
ability evaluation procedure for multi-agent story
generation systems. In Intelligent Virtual Agents,
Vol. 3661. Springer, Berlin, Germany, 2005; 278–291.

13. Loyall AB. Believable agents: building interactive per-
sonalities, Ph.D. Thesis, Carnegie Mellon University,
1997.

14. Livingstone D. Turing’s test and believable AI in
games. Computers in Entertainment 2006; 4(1): 6.

15. Wetzel B. Step one: document the problem. In Chal-
lenges in Game Artificial Intelligence: Papers from the
2004 AAAI Workshop. AAAI Press, Menlo Park, CA,
2004; 11–15.

16. Laird JE, Duchi JC. Creating human-like synthetic
characters with multiple skill levels: a case study
using the Soar Quakebot, In Simulating Human
Agents, Papers from the 2000 AAAI Fall Symposium,
Massachusetts, USA, 2000; 75–79.

17. Bryant BD, Miikkulainen R. Evolving stochastic
controller networks for intelligent game agents, In
Proceedings of the 2006 Congress on Evolutionary
Computation (CEC 2006), Vancouver, Canada, 2006;
3752–3759.

18. Isla D. Handling complexity in the Halo 2 AI, In Game
Developers Conference, San Francisco, USA, 2005;
12.

19. Pinchbeck D. Trigens can’t swim: intelligence
and intentionality in first person game worlds.
In Proceedings of the Philosophy of Computer

494 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

F. Tence et al. CHAMELEON

Games 2008. University of Potsdam, Potsdam, 2008;
242–260.

20. Cass S. Mind games. IEEE Spectrum 2002; 39(12):
40–44.

21. Mac Namee B. Proactive persistent agents: using sit-
uational intelligence to create support characters in
character-centric computer games, Ph.D. Thesis, Uni-
versity of Dublin, 2004.

22. Thurau C, Paczian T, Bauckhage C. Is Bayesian imi-
tation learning the route to believable gamebots? In
GAMEON-NA’2005, Montreal, Canada, 2005; 3–9.

23. Le Hy R, Arrigoni A, Bessiere P, Lebeltel O. Teach-
ing Bayesian behaviours to video game characters.
Robotics and Autonomous Systems 2004; 47: 177–185.

24. Tence F. Probabilistic behaviour model and imitation
learning algorithm for believable characters in video
games, Ph.D. Thesis, UBO, Brest, France, 2011.

25. Le Hy R. Programmation et apprentissage bayésien
de comportements pour des personnages synthétiques,
application aux personnages de jeux vidéos, Ph.D.
Thesis, Institut National Polytechnique de Grenoble,
2007.

26. Thurau C, Bauckhage C, Sagerer G. Learning human-
like movement behavior for computer games, In
Proceedings of the 8th International Conference
on the Simulation of Adaptive Behavior (SAB’04),
Los Angeles, USA, 2004; 315–323.

27. Fritzke B. A growing neural gas network learns topolo-
gies. In Advances in Neural Information Processing
Systems 7. MIT Press, Massachusetts, USA, 1995;
625–632.

28. Dempster AP, Laird NM, Rubin DB. Maximum like-
lihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B
(Methodological) 1977; 39(1): 1–38.

29. Tence F, Buche C. Automatable evaluation method ori-
ented toward behaviour believability for video games,
In International Conference on Intelligent Games and
Simulation (GAMEON’08), Valencia, Spain, 2008;
39–43.

30. Turing AM. Computing machinery and intelligence.
Mind 1950; 59(236): 433–460.

31. Hayes P, Ford K. Turing test considered harmful. In
International Joint Conference on Artificial Intelli-
gence, Vol. 14. Lawrence Erlbaum Associates LTD,
San Francisco, USA, 1995; 972–977.

32. Searle JR. Minds, brains, and programs. The Behav-
ioral and Brain Sciences 1980; 3: 353–382.

33. Gorman B, Thurau C, Bauckhage C, Humphrys M.
Believability testing and Bayesian imitation in inter-
active computer games. In From Animals to Ani-
mats 9, Vol. 4095. Springer, Berlin, Germany, 2006;
655–666.

34. Bossard C, Benard R, De Loor P, Kermarrec G,
Tisseau J. An exploratory evaluation of virtual football
player’s believability. In Proceedings of the 11th
Virtual Reality International Conference (VRIC’09),
Richir S, Shirai A (eds). IEEE, Laval, France, April
2009; 171–172.

AUTHORS’ BIOGRAPHIES

Fabien Tencé received his PhD in
computer science in 2011 concern-
ing "Probabilistic Behaviour Model
and Imitation Learning Algorithm
for Believable Characters in Video
Games". Now, he is working at Vir-
tualys.

Laurent Gaubert is an associate
professor in mathematics at the Lab-
STICC (French Laboratory UMR-
CNRS 3192), member of the team
IHSEV team at the European Cen-
ter for Virtual Reality (CERV). In his
doctoral thesis, he studied the links
between different scales of a variety

of coupled dynamical systems: emerging properties, syn-
chronization, biological data individuation... (2007). He is
also interested in artificial intelligence algorithms, their
automatic learning and their believability properties.

Julien Soler works for Virtualys, a
software development company spe-
cialized in virtual reality, 3D inter-
actions and web based technologies.
He is currently a PhD student at
the Lab-STICC and works on the
CHAMELEON Project.

Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

495

CHAMELEON F. Tence et al.

Pierre De Loor is a professor at
the Lab-STICC. He is the head of
the IHSEV team since 2012 and the
Head of the CERV. He wrote his
doctoral thesis in Automatic, Signal
and Software Engineering (1996) and
his Accreditation to Direct Research
(HDR) in Computer Science (2006).

He is interested on the link between artificial intelligence,
cognitive science and virtual reality. He is also interested
on phenomenology, epistemology and links between art
and science.

Cédric Buche is an associate profes-
sor in computer science and works
at CERV. His research concerns
the simulation of adaptive behav-
iors. He wrote an Accreditation to
Direct Research (HDR) concerning
the simulation of adaptive behav-
iors (2011). He is the leader of the

CHAMELEON project.

496 Comp. Anim. Virtual Worlds 2013; 24:477–496 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

