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ABSTRACT

To be believable, virtual entities must be equipped with the ability to anticipate, that is, to predict the behavior of other
entities and the subsequent consequences on the environment. For that purpose, we propose an original approach where the
entity possesses an autonomous world of simulation within simulation, in which it can simulate itself (with its own model
of behavior) and simulate the environment (with the representation of the behaviors of the other entities). This principle is
illustrated by the development of an artificial juggler in 3D. In this application, the juggler predicts the motion of the balls
in the air and uses its predictions to coordinate its own behavior to continue to juggle. Copyright © 2012 John Wiley &

Sons, Ltd.
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1. INTRODUCTION

Automatic decision making by artificial systems situated
within given environments is difficult to model, especially
when the environment is dynamic, complex, open, and
populated with independent entities. Virtual reality is an
ideal field for modeling complex decision-making behav-
ior, as it occurs at the heart of interactions with humans,
who elicit subtle and varied reactions and perceptions.
The emergence of interactive motion systems (Wiimote,
Kinect, etc.) makes studying the subtlety of these connec-
tions even more crucial. Graphical realism is not sufficient
and indeed is no longer the priority: the reactions and thus
real-time decision making by the virtual entities within
the environments must be “believable” [1]. This notion
of believability is subtle and varied and can be studied
according to many different criteria. For example, there are
studies relating to movement [2], to the character’s real-
ism [3], and to the impact of the synchronization between
image, sound, and movement [4]. We, however, are inter-
ested in the believability of a behavior “during a behav-
ioral interaction” [5] and, more exactly, in the ability to
anticipate more or less precisely the future of the environ-
ment thanks to the knowledge of its dynamic properties as
humans do. We do not address graphical realism nor ges-
ture synthesis. Our work focuses on the perception-based
decision-making dynamic. In this research, we consider
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only believable as giving the illusion of being controlled
by a human.

Anticipation can be observed in living creatures at
almost every stage of evolution (including bacteria, cells,
plants, vertebrates, and mammals). As an illustration of this
principle, the “waiter experiment” [6,7] gives the example
of a waiter holding a tray in one hand, on which is bal-
anced a jug of water. With his other hand, the waiter lifts
the jug. At that moment, the hand holding the tray, which
should have lifted as it is now carrying less weight, remains
in the same position. Instinctively, the waiter predicts the
consequences of his movement, anticipating the relief of
the load-bearing arm [8].

Surprisingly, despite increasing (or even omnipresent)
proof of its importance, anticipation has for a long
time been ignored or underestimated in the behavioral
modeling of virtual entities. Implicitly, planning archi-
tectures make some anticipations but they are based
on representations that are difficult—if impossible—to
define as the environment evolves according to differ-
ent aspects or different scales (apparition or disappear-
ance of objects or actors, modification of their trajectories,
new behavior to discover...). Psychology [9,10] and neu-
rology [11,12] stress the importance of our anticipation
mechanisms in reasoning. They also point to the use of
internal behavioral simulations in the lead-up to effective
reasoning [8].
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Virtual entities using anticipatory capacity

This notion of internal behavioral simulation could be
used to overcome the problem of symbolic representation
in classical artificial intelligence reasoning generally based
on the notion of “theory of mind.’. Indeed, if we simulate
the world, we can have an approximation of its future with-
out the need of a logical representation based on symbols
and inference rules. Thanks to virtual reality, the world
could become its own model, as Brooks proposed to do
for artificial intelligence [13].

As this behavior-modeling paradigm is relatively new,
it remains unconfirmed as there are still many questions
regarding its use, functioning, and success. This document
addresses these questions by proposing to model anticipa-
tion as an internal simulation of the evolution of the envi-
ronment and of the interactions between the autonomous
entity and that environment. Internal simulation is thus
taken into account during the decision-making process.

This article begins by presenting the theoretical frame-
work of anticipation in decision making. We then go on to
examine the use of internal behavioral simulation in inte-
grating the anticipatory process into an artificial entity’s
decision-making process. Next, we describe our applica-
tion, in which a virtual juggler anticipates the trajectory of
balls in a simulated model and subsequently controls the
position of its hands. We then evaluate the impact of antic-
ipation on the virtual juggler’s decision-making processes.
Finally, we present our conclusions and the future direction
our study will take.

This paper extends our first study presented in
the conference Computer Animation and Social Agent
(CASA*11) [5]. In this new contribution, we develop the
theoretical part starting by the foundation of anticipation
to our proposal. In addition, we present new experiments
showing new results concerning the learning process, the
robustness of our model, and the link between anticipation
and decision making.

2. THEORETICAL FRAMEWORK:
THE ROLE OF ANTICIPATION IN
DECISION MAKING

In this section, we present the theoretical framework. The
aim is to recall the foundations of anticipation, which leads
us to concern with the principle of internal simulation.
Then, we emphasize the importance of an explicit model
of anticipation.

2.1. The Foundations of Anticipation

As our aim is to simulate human-like behaviors, it is
important to have a look at previous research in different
fields of cognitive science such as philosophy, psychology,
neurology, and physiology.

2.1.1. Philosophy: Man Is Oriented toward
His Future.

The first people to study human behavior were philoso-
phers. These studies showed that Man, by his very nature,
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is oriented toward the future, questioning his future.
Philosophers suggest two approaches: (i) the use of past
knowledge in anticipating the future [14,15], an idea which
is also prevalent in psychology; and (ii) the theory of
simulation [16,17], which is also prevalent in neurology
and physiology.

2.1.2. Psychology: The Role of Past Knowledge
in Anticipating the Future.

This idea suggests that we use the memories of our
past experiences and observations to anticipate the conse-
quences of our actions and the behavior of those around
us. Identifying regularly observed phenomena from the
past enables us to react in an anticipatory manner. This
idea opened the door to anticipation studies in behavioral
psychology. Studies on rats led to the identification of
anticipatory mechanisms [18] and the use of predictive
models’ of the environment [19]. Studies with human sub-
jects revealed the importance of anticipation in human
behavior [20,21]. Hoffman thus put forward a behavioral
model (anticipatory behavioral control), basing his work
on the ideomotor principle* [22]. Anticipatory behavioral
control is a theoretical decision-making and learning model
in which the subject first focuses on the desired out-
come and then takes the context into account to choose a
suitable action.

2.1.3. Neurology and Physiology:
Simulation Theory.

For this field, the brain is a simulator for actions, and
thought is the simulated interaction with the environment
[8,12,23]. It was also a precursor to all anticipation studies.
Cerebral imaging techniques in neurology have enabled us
to measure cerebral activity at the heart of a monkey or
a human’s brain while carrying out certain actions. It was
possible to use the results of such tests to isolate an area of
the brain known as mirror neurons [11]. These neurons are
activated in very similar ways in the situations described in
Table I. Although all these elements are still hotly debated
topics in cognitive science, they led some researchers to
suggest that this area of the brain might enable the men-
tal simulation of actions and the anticipation of others’
behavior via an empathy mechanism.

Internal simulation, particularly of movement, has foun-
dations in neurophysiology, which are now well docu-
mented [24]. Individuals do not make these sensorimotor
predictions through logical reasoning based on abstract
symbols representing the real world [25]. Instead, they are
made via biological simulation where, thanks to inhibit-
ing mechanisms, “everything occurs as if" the individuals
were really acting [8]. For vision, for example, the brain

TPredictive models suggest potential outcomes, thus defining
the anticipation process.

“The ideomotor principle suggests that actions are chosen
according to the desired outcomes rather than as a reaction to
a stimulus.
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Table I. Situations “showing" the mental simulation of actions and the anticipation of others' behavior in the brain.

Carrying out an action

Imagining carrying out the same action

Watching a third person carrying out the same action

Imagining or anticipating a third person carrying out the same action

has a way of imagining eye movements without moving
thanks to the action of inhibiting neurons, which close
the command circuit of the ocular muscles: by staring
at a spot in front of you and by moving one’s attention,
one has the impression of looking around the room, a
sort of “interior regard". This virtual eye moment is sim-
ulated by the brain activating the same neurons, except
that the action of the motor neurons has been inhibited.
The brain can thus be considered a biological simulator
[8] that is able to make predictions based on memory
and to create hypotheses based on internal models of
the phenomenon.

Following this idea, in this article, we propose a
model to predict, not by formal reasoning but by behav-
ior simulation. The next step is to explore anticipation
models.

2.2. The Importance of an Explicit
Anticipation Model

In this section, we wonder how an explicit modeling of an
anticipation mechanism might benefit our research. To bet-
ter understand our position, we need to clearly differentiate
implicit and explicit anticipation models.

2.2.1. Implicit Anticipation Model.

In the first case, implicit anticipation does not rely
on specific predictive models to anticipate the future;
obtaining knowledge about the future is part of the
decision-making mechanism or of genetic information.
One example of low-level implicit anticipation is that of
trees that shed their leaves in autumn to avoid frost damage
in winter. As temperatures drop and days become shorter in
autumn, the trees anticipate the arrival of winter and duly
react by shedding their leaves, breaking the connection at
the inside of the leaf stems (so that the leaves can then be
carried away by the wind). It is likely that the tree does not
use an explicit environmental model to predict the coming

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

of winter but rather genetically transmitted implicit antici-
pation. The same anticipatory mechanisms can be observed
in hibernating animals.

2.2.2. Explicit Anticipation Model.

In the second case, explicit anticipation uses one or more
explicit predictive models of the environment and/or self
and uses these models to make predictions about the future.
An example compares the hunting behavior of a dog with
that of a snake [26]. It has been observed that dogs go on
chasing prey even if they can no longer see it by using a
predictive prey model, thus predicting its behavior and con-
tinuing with the hunt. However, when snakes lose sight of
their prey, they cannot predict their movements or future
positions and instead anticipate (implicitly) that they have
more chance of catching their prey by returning to the
place where they last saw it. According to Rosen, human
behavior is essentially anticipatory and is based on explicit
environmental models [27]. He offered the example of a
hunter who finds himself a few meters away from a bear
and whose behavior would be to hide so as not to be seen.
It is not the sight of the bear itself that triggers this reaction
but rather that which the hunter imagines, or anticipates,
might happen as a result of an encounter with a bear.

2.2.3. Conclusions.

From these examples, it would seem that complex
cognitive behaviors (of humans and intelligent animals)
rely on explicit predictive models used to anticipate their
environment, whereas less complex cognitive behaviors
do not.

Whatever the complexity of the behavior is, using an
explicit anticipatory model is a means to handle its subtlety
when it is a question of its simulation. Moreover, studying
in detail the inherent mechanisms implied in anticipation
at different cognitive levels (reactive or deliberative) gives
cues to better take into account the effects of anticipation,

113



Virtual entities using anticipatory capacity

i.e. its consequence on the successes but also on the failures
of different tasks in different contexts.

Consequently, the next step is to explore existing pro-
posals integrating an explicit model of anticipation.

2.3. Anticipation-Based Artificial Behavior

According to [28], there are three categories of explicit
anticipation :

1. The anticipation of considerations, which brings
together approaches using predictions about the
possible rewards of the potential actions. In this cat-
egory, we find all the reinforcement learning algo-
rithms, Q-learning [29], Sarsa [30], and classifiers
systems [31].

2. Sensory anticipation includes the use of predic-
tive environmental models to orient the entities’
perceptions more effectively, especially to process
expected rather than sudden perceptions [24]. This
approach brings together the ideas of active per-
ception, attention, and sensory blindness. A good
example of this is the experiment by Simon and
Chabris, which asked students to watch a basket-
ball match on television and to count the number of
passes between players [32]. Almost all of the stu-
dents gave the correct answer. However, the major-
ity failed to notice the man dressed as a gorilla who
walked into view, stopping to beat his fists against
his chest.

C. Buche and P. D. Loor

3. State anticipation deals with the use of predictive
models to foresee evolutions in the environment to
observe how this is taken into account in decision
making. In this category, we find all algorithms with
the ability to recognize patterns and to make predic-
tions from those patterns (for instance, the Hierar-
chical Temporal Memory (HTM) architecture [33]).
Virtual entities could use this knowledge to act in
goal-oriented anticipation (planning), that is, to try
to detect these unwanted states in the environment
before they occur and thus react so that they might
be avoided [34].

It must be noted that state anticipation can also include
anticipation of considerations and sensory anticipation and
as a consequence seems especially interesting. It has been
the focus of a great deal of research [34-38]. These studies
raise the following questions:

e In what circumstances are anticipatory behaviors the
most believable and lead to faster adaptation than
non-anticipatory processes?

e What is the link between immediate decision making
and the anticipatory mechanism?

e What are the links between anticipation and learning?

The goal of this paper is to give clues to these ques-
tions. First, we propose an anticipatory architecture model.
Next, we show its application to a virtual juggler. Finally,
we evaluate the anticipatory mechanism, its qualities, and
its impact on decision making for the juggler animation. It

Figure 1. The entity (left) anticipates the behavior of the other entities (right). To do so, it possesses an imaginary world in which it
“imagines" what is going to happen.
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must be noted that the virtual juggler is just an application
to test our predictive model.

3. PROPOSAL: CONCEPTUAL
FRAMEWORK

Our proposal is based on the theory of internal simulation
with explicit anticipatory representation, that is, advance
simulation of the evolution of the entity’s environment
(state representation) to make a decision. To do so, we pro-
pose to populate a virtual world with our virtual entities
with the ability to predict and the ability to learn. The aim
is to create an explicit anticipatory model; the most impor-
tant issue is to achieve a final behavior that accounts for the
characteristics of believability and adaptation.

Research in cognitive ergonomics have shown the exis-
tence of several cognitive levels operating in parallel dur-
ing the execution of tasks aiming at path planning by
humans [39]. The first two levels may correspond to the
modes of control for acting and predicting. The third level,
more abstract, is the place for questioning and learning.

Inspired by these ideas from cognitive ergonomics and
neurophysiology, we propose an architecture for the imple-
mentation of an autonomous virtual actor, predictive and
adaptive. Three cognitive processes operate in parallel and
are synchronized using messages. The first, reactive, oper-
ates at high frequency for the acquisition of certain sensors
and is associated with sensorimotor strategy. The second,
predictive, conducts internal simulations with medium fre-
quency, which can be synchronized periodically with per-
ceptual information. This predictive mode can change the
reactive mode by providing a new sensorimotor strategy.
The third, adaptive, compares predictions with perceptions
to change behavior patterns used by the other two modes.
Implemented when a prediction error is obvious, the third
mode can operate in the background at low frequency. The
next sections describe levels 2 and 3.

3.1. Virtual Actors and Imaginary Worlds

While acting within the virtual world, each entity can sim-
ulate its own behavior in its imaginary world (with its
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own behavioral model), along with that of its environ-
ment (using the representation that it has of the behavior
of other entities). This simulation occurs a phase ahead of
the original simulation, enabling the entities to make pre-
dictions. This imaginary space, unique to each entity, func-
tions in parallel with its activity within the virtual world,
asynchronously so as not to block the behavioral anima-
tion (Figure 1). This imaginary world is a universe of a
simulation within a simulation.

3.2. Virtual Actors and Learning

Prediction in the imaginary word implies a representation
of this world and of its dynamic. To obtain this representa-
tion can be a hard challenge because a world adapted to this
approach is open: unpredictable interactions can appear
every time, and moreover, the dynamic properties can be
disturbed (for instance, wind can disrupt the trajectories of
flying objects). So, learning mechanisms are a good way to
learn the dynamics of the world.

In our proposal, predictions in the imaginary world are
improved by observing the virtual world online. The virtual
actor will then modify its representations of other entities
using a learning mechanism. It must be noted that this
observed world can also be populated with other actors
or with human-controlled avatars [40]. Similarly, for the
approach to be generic, it is important for the control of
the behavioral model to be independent of the learning
mechanism so that the model might be piloted by any
decisional mechanism.

The development of learning adds a whole extra
dimension to our model (Figure 2). Indeed, our virtual
entities evolve in a virtual world (first dimension: the vir-
tual world), simulate the representation of behaviors in an
imaginary world (second dimension: the imaginary world),
and adapt the representation of behaviors through learning
(third dimension: the abstract world).

3.3. Links between Virtual, Imaginary, and
Abstract Worlds

The challenge here is therefore to identify the three dimen-
sions and to understand their interactions. The three worlds

modification of behavior
representation

Choice of strategies, predictions, etc.

- VIRTUAL World

Figure 2. Conceptual framework: representation of the entities’ three dimensions (the real world, the imaginary world, and the
abstract world).
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evolve in parallel and correspond to three different lev-
els of abstraction. Nevertheless, they are all related and
share information. The virtual world provides the nec-
essary information to the imaginary world to simulate
an approximate representation of the virtual world. Fur-
thermore, it provides the abstract world with the infor-
mation it needs on the model, that is, an approximation
of these effectors and the sensors linked to the models
to be adapted. The imaginary world feeds back informa-
tion, particularly concerning the choice of strategies or
predictions (Figure 3).

4. APPLICATION: JABU

The first implementation of this approach is a virtual jug-
gler that predicts the displacement of balls in the air to
coordinate its movements and juggle successfully.

The choice to perform an anticipatory juggler comes
from the nature of the juggling task, which is highly
dynamic and where the anticipation is essential. Indeed,
unless you can move your hands instantly from one place
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to another, it is necessary to predict the behavior of balls
to react quickly enough to keep the juggling activity with
high temporal constraint (a small delay causes the fall to
the ground of one or more balls).

The problem of a virtual juggler was discussed by
[41,42], but these approaches have not taken into account
the modeling of generalized anticipation or the theory of
simulation. More generally, they do not address the links
between cognitive sciences and a character’s behavior. We
will show that the conceptual framework proposed here can
account for adaptation but also plausible errors, through
interactions more or less predictable, especially with a
real human. An application of the conceptual framework
of anticipation for this example is shown in Figure 4.
The application is called JABU: juggler with anticipatory
behavior in a virtual universe (Figure 5).

The virtual world of the juggler has physical properties
(inertia, gravity, wind, etc.) through the use of a physics
engine, the Open Dynamic Engine (http://www.ode.org/).
Of course, these quantities are not explicit in the model
of control. This control is adjusted through an attentional
process focused on the next (anticipated) ball (at this time

Figure 3. Internal behavior simulation. The actor, represented by the triangle, establishes a simplified representation of the world. It
simulates both its own behavior and that of the other entities in an imaginary world. After simulating a number of different possibilities,
it can decide which strategy to adopt.

{abstract world)

General approximer of balls behavior

Maodel ofthe world dynamic
{neural network weights)

Learning {gradiant

-Next ball ? Next position ? Retropropagation)
-{imaginary world)
actuation predictions
Ea"?tl Interactive behavior Action control
OO:S n:a'l (virtual world) Attention Hand position
i i On one ball
speed

Application to virtual juggler

Figure 4. Instantiation of our framework for a virtual juggler.
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Figure 5. Screenshots of the JABU application.

one ball by hand). The approximate position of the balls
is made by their simulation in the imaginary world of
juggling. Function approximation properties of this imag-
inary world come from different neural networks (NN).
The abstract world corresponds to the weights of the
arcs of these networks. Because they are universal
approximators, we will see that they allow real-time adap-
tation of the juggler gestures to different types of distur-
bances. In the following, we clarify the implementation of
these principles.

4.1. Virtual World

4.1.1. Presentation.

The motor behavior of the juggler is controlled by its
hands. The hands have independent functions, that is to say
that there are no complex juggling moves or tricks but sim-
ply a succession of catches and throws of the balls, where
each movement is independent of the others. As soon as a
ball “arrives” at the same height as the hands, it must be
caught and rethrown. The time taken for a hand to move is
not negligible and exposes the juggler to a risk of delay and
thus “missing" the ball, which is also amplified by predic-
tion errors. As mentioned earlier, the precise reproduction
of the movement is not our priority, and the hand’s move-
ment time is an empirically adjustable variable that reflects
the delay between the decision being made and the action
being carried out. In the following section, for simplicity’s
sake and to keep things brief, when we refer to a hand’s
activity, we also of course mean that the theoretical model
has been implemented for the anticipatory decision making
applied to our juggler.

The different phases of juggling are the following. The
juggler begins by looking for a ball in the air. Once
the ball is spotted, the hand must aim at an estimated

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.
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reception point (prediction T1). Then, it is possible to
refine this reception point. To do so, the hand must esti-
mate and correct the anticipated trajectory of the target ball
(prediction T2), which is the object of attention. Each hand
will therefore be able to catch or miss the target ball. If the
ball is caught, the juggler will be able to throw it in the air.
Whether the ball is caught or missed, the hand again begins
to look for a ball in the air.

4.1.2. The Link between the Virtual and
Imaginary Worlds.

To aim at a reception point and to estimate the antici-
pated trajectory of the target ball, the hand will have to use
predictive models. Within the context of juggling, infor-
mation must be gathered quickly to maintain the juggling
dynamic. The use of perceptron-type NN to make pre-
dictions about the trajectory is adequate. Indeed, NN are
executed rapidly, and online learning occurs both quickly
and effectively. Furthermore, NN correspond to our need to
manipulate (both spatial and temporal) digital data. It is, of
course, also possible to use determinist equation models of
movement to make predictions. However, such precise pre-
dictions would be extremely noise sensitive (disruption of
the environment as the ball falls) and would not account for
the use of approximations and readjustments in real time,
which seem to be the basis of the anticipatory mechanisms
that we aim to respect [8].

Table Il. Input/output of neural network T1.

Inputs Output Parameter Objectives

Vx At h Temporal classification
Vy Ax Vague spatial prediction
Vz Ay

17
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T1 (a) y

T2 (b)

Figure 6. NN T1: The ball has just been thrown at a speed in x, y, z (arrows), giving us a first estimate of the position at which it will
cross plane z = h (blurred circle) and how long this will take (a). NN T2: At any given time as the ball falls (ball with arrows), we can
use its speed (arrows) to make a more accurate estimation of its position in At seconds (blurred ball) (b).

It must also be noted that we are working from a prag-
matic rather than a neurophysiological perspective. In no
way do we suggest that we are simulating “low-level” neu-
ral functioning like that in robotics [43] but rather that
we are creating an anticipatory behavior that is as effec-
tive as possible. Thus, perception must be seen as a simple
approximation. It must also be noted that NN are in this
case used as explicit models of anticipation rather than
functioning: NN outputs are information concerning next
positions (category 3: evolutions in the environment).

We shall now go on to describe the predictive models
used for simple juggling (juggle alone) and for juggling
between a virtual entity and a human user.

4.2. Imaginary World

This section describes the juggler’s predictions T1 and T2.

4.2.1. Prioritizing the Balls (T1).

The NN T1 will provide us with the estimated temporal
and spatial data for each ball at the moment it is thrown.
These data will be used to categorize the balls and attribute
them priorities, thus triggering the attentional process on
the priority ball. The data required to calculate these esti-
mations are the current speed of the ball and the height
h at which the ball must be caught. This NN includes
the following:

e Three inputs: the three speed components of the ball
in 3D representing the three axis of the space
o Three outputs:

1. The estimated time (duration) before the ball
crosses a plane in z = h (h determined
during learning)

2. The movement in x of the ball on crossing

plane z = h
3. the movement in y of the ball on crossing
planez = h

118

x and y define the Cartesian plane. The data used by the
NN T1 are summarized in Table II. The information that it
represents is illustrated in Figure 6.

This prediction enables the juggler to choose the next
ball to catch and to focus on it. Having made this deci-
sion, the juggler begins to move its hand toward the esti-
mated area while at the same time refining the prediction
using a second, more “accurate”, predictive model, which
will enable it to anticipate the movement of the ball more
precisely in a shorter time (prediction T2; Section 4.2.2).

4.2.2. Refining the prediction of the target
ball (T2).

The NN T2 refines the spatial prediction of where a ball
will fall as it falls. Information can be obtained at different
temporal levels (according to At). This NN includes

e Three inputs: the three speed components of the ball
in 3D

e Three outputs: an estimation of the movement in x, y
and z of the ball after a given time At (where At is
defined during learning)

The data used by the NN T2 are summarized in Table III.
The information that it represents is illustrated in Figure 6.

4.3. Interaction between Virtual Jugglers
and a Human

The general features of this proposition allow several jug-
glers to interact together. So that they can do this, the only

Table lll. Input/output of NN T2.

Inputs  Output Parameter Objectives

Vx Ax At Refined spatial predictions
Vy Ay

Vz Az

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.
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(@) (b)

Figure 7. Multi-jugglers (a) and a human can juggle with the virtual juggler using the Wiimote (b).

change is the direction of the ball launched by each juggler
(Figure 7 (a)).

Our juggler can also catch a new ball thrown by a human
user (Figure 7 (b)). This is extremely pertinent for evaluat-
ing the believability of our virtual juggler (real-time deci-
sion making, online adaptation, etc.). Introducing a human
user also requires the introduction of a new type of predic-
tion (T3). T3 is similar to prediction T1, except that the ball
is not thrown by the virtual juggler. The human user inter-
acts with the virtual juggler using a Wiimote (remote game
controller from the Nintento Wii console). This peripheral
device measures the movements of the human user’s hand.

4.4. Abstract World

In its example base, NN T1 has access to throws made by
the juggler itself (low speed in x and y) whereas NN T3
records the balls thrown at a distance by a third person
(much greater speeds).

4.4.1. Learning.

We chose a topology with two hidden layers as the aim
was to approximate a continuous function [44]. Each hid-
den layer has 19 neurons, and we thus obtain 3x19x19x3
multilayer perceptrons. We assign the perceptron weights
with given values prior to learning. The activation func-
tion of the neurons is limited. The learning algorithm is a
retropropagation of the gradient error. Learning is thus con-
ducted with a maximum of 100 iterations using the Fast
Atrtificial Neural Network.} The parameters to be deter-
mined are / for the NN of T1 and At for the NN of T2.
In our example, 7 = 2.5 cm and At = 0.1 s.

4.4.2. Verification.
We divided the data into two subsets: the learning set
and the validation set. The validation set is not used for

SFast Artificial Neural Network library available at http://
leenissen.dk/fann/

Chack
Leaming

Figure 8. Overall error in learning and validation.

learning but rather to verify the relevance of the network
with unknown samples. In this case, we have a sample of
500 pairs of inputs/outputs for NN T1. The learning set
uses two-thirds of this sample, and the rest is in the valida-
tion set. We obtain Figure 8. The graph illustrates the mean
quadratic error at each stage of learning for each sample.
It must be noted that the learning set shows that the error
decreases dramatically, and the validation set confirms that
overlearning does not occur.

5. EVALUATION: THE EFFECTS OF
PREDICTION ON BEHAVIOR, AS
APPLIED TO JABU

In this section, we shall evaluate the anticipatory mecha-
nism, its qualities, and its impact on decision making and
the final result: the juggler animation. The generalization
abilities of NN allow the in-line adaption of the juggler’s
motion to disturbances. The tests presented will vary the
initial conditions for a given period. All of the tests include
42 balls thrown towards the virtual juggler (one ball every
0.75 s). We will observe the number of balls dropped by
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the juggler (i.e., those that fall below the juggler’s knees
and that it is unable to catch).

5.1. Quality of the Model

Here, we will focus on the quality of our model, enabling
us to make predictions about T1 and T2.

First, we compared the performance of our juggler with
the spatial and temporal predictions based on our NN and
others based on equations of movement. We simultane-
ously launched ten 1 min NN simulations and 10 others
using calculated equations. An average of 30 balls were
dropped for the NN and 31 for the equations. We can
thus conclude that the prediction of the NN T1/T2 and
the equations (exact prediction) are equivalent, so NN are
good-quality models for the juggling simulation.

We then attempted to distort the prediction model. To do
so, we weighted the input/output data provided for learning

45 T

Mean with 5 values for each % ——

40t ~ ]

35f : 8

nb Balls

20 40 60 80 100 120 140 160 180
% Error - RNAT1 -

25
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Figure 9. Average number of balls dropped according to the
error percentage of the data provided to the NN for the T1
prediction.

C. Buche and P. D. Loor

according to a maximum error percentage. We compared
the performance of our juggler for a distorted T'1 prediction
with an augmented maximum error percentage (from 0%
to 180%) against the original data values. We conducted
five simulations for each percentage. The experiment was
based on 1 min simulations for each maximum error per-
centage. We obtained the results presented in Figure 9. The
more the input/output data are distorted, the more balls
the juggler drops. There is a distinguishable breaking point
around the 120% maximum error. This therefore supports
the reliability of our T1 prediction.

5.2. Disturbing the Environment Online

Here, we experiment by distorting the model to validate
its reliability. This will be tested by changing the pro-
jectile, varying gravity in the virtual environment, and
adding wind (Figure 10). This information will not be
given to the juggler; its imaginary world and its abstract
world will therefore provide different conditions than the
virtual world.

First, we introduce jerks in the projectile trajectories
because they become maces rather than balls. In this
case, the NN T1 is less precise in its prediction, but the
NN T2 is able to correct properly the prediction and the
juggler continues to juggle when balls are transformed
in maces.

In Figure 11, we introduced gravity variations: on the
y-axis, the number of balls dropped, and in the x-axis,
the value of gravity in meter per square second. We calcu-
lated the mean for 10 values. The experiment was based on
1-min simulations for each gravity value. We observed that
juggling was possible for gravitational values between 6
and 15 (normal gravity: 9.81). In cases of extremely low
gravity, no balls were recorded as dropped, as they did
not have the time to fall to the ground during the short
simulation time.

(b)

Figure 10. Juggling with maces (a) and disturbing the environment conditions in line (wind, gravity) (b).
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Figure 11. Average number of balls dropped according to
gravity.

In Figure 12, wind was added. We thus obtain a curve for
dropped balls according to wind in x (a) and in y (b). In the
y-axis, we observe the number of balls dropped and in the
x-axis the acceleration according to wind speed (in m/s2,
with direction indicated by positivity or negativity). The
x-axis value is an acceleration due to the fact that we use
a modification of gravity to simulate the wind. The mean
was taken for five simulations for each wind value.

For wind in x (width), we observe that between —0.5 and
+0.5 m/s2, the juggler catches most of the balls. Beyond
that wind speed, it is much more difficult to juggle cor-
rectly. For wind in y (depth), the range of speeds in which
the juggler continues to juggle correctly is much smaller
(between —0.2 and +0.2 m/s2).

5.3. Relationship with Decision Making

The predictive model provides information for decision
making, here, the choice of hand movements. We exper-
iment with variations in the execution of the decision-
making model for one given predictive model. We decided

T
'..“. """"
0 \ \ o)
o 37 ot i | IR —~
; WL ;
m 36 TR |I | VoY) m
Q Q
c . e c
I;-.._I A
I|' |
3 S ST S
I~ | i |
—-0.66 -0.33 0 0.33 0.66
wind speed (m/s”2)
(a)

40
39
38
37
36
35
34
33

32

Virtual entities using anticipatory capacity

to vary hand speed. Figure 13 illustrates the evolution of
the average number of dropped balls according to varying
hand movement speed. For this experiment, we conducted
19 simulations at the same speed. The change in speed
took place at 0.0005-s intervals. The speed boundaries var-
ied from 0.0005 to 0.1 s, and the experimental simulation
lasted 2 min.

It was observed that beyond 0.04 s, a high percentage of
balls were dropped. Despite the anticipatory mechanism,
decision making no longer enabled the juggler to juggle
successfully. We also noted that the juggler could no longer
juggle with more than nine balls at once.

5.4. What Would Be the Behavior of the
Juggler without This Anticipation
Mechanism?

Now that we have presented these results, it is interest-
ing to come again on the main purpose of our work :
improving the credibility of our virtual characters. As men-
tioned earlier, in our case, this notion of credibility must
be seen in terms of interactive behavior and not in terms
of realism (such as that in gesture synthesis for exam-
ple [45,46]). Virtual jugglers were developed in different
works by [42] or [41], generally to address the planning
problem but rarely the interactive problem, that is, the dis-
ruption of the plan at any time and in any direction. For
us, the goal is on the reaction of the avatar to different
un-represented interactions. Of course, it is quite exces-
sive to affirm that all possible disruptions are possible and
that all interactions are un-represented because we know
in advance what kind of disruption we will present to the
model. Nevertheless, our proposition is a step toward this
ideal situation. Anticipation improves the autonomy of our
juggler. As an example, the important human-like behav-
ioral properties we choose to highlight and that could not
be reached without an explicit anticipative mechanism are
the following:

-0.66 -0.33 0 0.33

wind speed (m/s”2)

(b)

0.66

Figure 12. Mean number of dropped balls according to wind speed in y (a) and in x (b).
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Figure 13. Average number of balls dropped according to hand
speed.

e The abilities to focus, during action, on a few number
of sensations, depending on the current context of the
situation. This attentional mechanism has a drawback:
humans can miss an action that could succeed with an
optimal calculus. It is exactly the case with our archi-
tecture. The ball our juggler focuses on could pro-
gressively become a bad choice (for instance, because
the wind or another ball collides with this one). In
this case, like a real human, the juggler fails to catch
the ball.

e The abilities to make approximative reasoning with
a nonsymbolic and nonexplicit perception. Thanks to
the use of NN, our juggler can adapt its arm’s posi-
tion in a precise position, and it can catch a ball
even if some small disturbances arrive. Classical plan-
ning approaches are used to face these problems: if
they use discrete variables, it implies the impossibility
to adopt continuous values (such as the arm posi-
tion); if they use approximative reasoning—which
allows us to correct in line a drift from a planning—
it implies that this drift should be provided and then
explicitly represented.

e The abilities to adapt and to learn online the chang-
ing behavior of the environment. Our architecture can
learn the environment. Of course, it is the case with
classical reinforcement learning algorithms, but with
this kind of algorithms, one learns qualities associ-
ated to discrete states. This mechanism takes a very
long time and is not tractable in-line during an inter-
action with a human. Moreover, it generally addresses
discrete decision when, for our juggler, the decision
leads to a precise position of the hand. In our case, the
system does not only recognize a changing of behav-
ior but can also learn this change. From this point of
view, our work is close to [47], which is able to teach
to a robot continuous movements in-line.

In summary, without our architecture, the juggler would
be unable to credibly lose its ball and to adapt to a human
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juggler, which never interacts exactly in the same way
because it is the human nature for behavior to be imprecise
but rarely irrelevant.

5.5. Limits

The drawbacks of all these important properties are as fol-
lows: (1) the lack of correlation with real data; and (2) the
need for dedicated models of predictions.

First, let us discuss the lack of correlation with real data.
It is obvious that the more an agent is autonomous, the less
it is possible to control it. Because we need an autonomous
agent, we must be happy about this autonomy. Neverthe-
less, to improve its credibility, it is necessary to refine some
details about the behavior. We need to better fit the behav-
ior with human dynamics. In other words, our agent is
credible because it adapts its behavior to its perceptions,
but even if the manner it performs this adaptation com-
plies with cognitive considerations broadly, it is not the
case for details comparing to the real reaction of a human.
To overcome this problem, we need to improve the mod-
els from real cases and to add physical properties to the
body of the agent. Some works address this issue [48]. One
of our objective is to mix our proposition with this kind
of works.

Concerning the need for dedicated models of prediction,
even if our proposition is very generic, that is, anticipating
from a virtual simulation of the agent behavior in a virtual
world, we use NN for the example of juggler. The propo-
sition of NN T1 and T2 is very specific to this case. For
the moment, each new case of application of our frame-
work will need studies of anticipative models adapted to
the specific domain.

These drawbacks indicate how some work still remains
to address a real autonomous agent.

6. CONCLUSION

For the behavioral believability of the interaction of a vir-
tual entity to increase, it would seem essential to inte-
grate an anticipatory capacity by which the behavior of
other entities and their consequences on the environment
can be predicted. To do so, we suggest an architecture
by which the three modes—reactivity, predictability, and
adaptability—can function asynchronously in parallel. The
prediction is made by an autonomous world of a simula-
tion within a simulation, in which the entity can simulate
itself (with its own behavioral model) and its environment
(with the representations that it constructs of the behaviors
of other entities).

We developed a virtual juggler that anticipates the trajec-
tory of the balls without calculating them precisely. Indeed,
the juggler hypothesizes using an open and uncertain envi-
ronment with variable properties, that is to say, that are
unknown from an analytical standpoint. We therefore use
universal approximators obtained through learning.
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Two types of predictions offer answers to the questions
of which will be the next ball to catch and where it will
fall. Another prediction accounts for the balls thrown by a
human user using a Wiimote. These predictions are made
and refined by NN. Through our application, known as
JABU, we were able to evaluate our proposal using a
number of experiments.

Of course, this work does not address the quality of
gestures, nor the comparison with real data from jug-
gling. To do that, we have in perspective the improvement
of this proposition with realistic models of gesture. For
the moment, the purpose was to show that it is possi-
ble to exhibit plausible failures in the task when taking
into account simulation and anticipation. Another impor-
tant point is that the juggler is able to juggle with people
who take part in an unpredictable environment.

We are currently orienting our work toward the addi-
tion of different juggling strategies. The imaginary world
of a simulation within a simulation could be used to test
many different possibilities. The results of such simu-
lations would help to provide strategies that are better
adapted to the virtual world.

We would also like to work on a new kind of predic-
tion dealing with the behavior of the human interacting
with the juggler. In the current application, the interac-
tion between the human and the virtual juggler occurs
using a Wiimote. This peripheral device measures the
movements of the human user’s hand. The virtual jug-
gler has access to these data, thus enabling it to “watch”
the user. A recognition mechanism could thus be con-
ducted by the juggler using the observed data, to identify
information that could offer clues about the human user’s
future behavior.

In this article, we did not evaluate yet our proposal in
terms of its believability. It will be the more challenging
perspective. As believability is subjective, evaluation is a
critical and complex step. Even if it was not intended to,
Turing’s test is still considered as a reference for believabil-
ity evaluation [49]. In its standard interpretation, a judge
must interact with a human and a machine. If, after a cer-
tain amount of time, the judge cannot tell which one is
artificial, the machine is said to be intelligent. Following
this idea, parameters for believability evaluation methods
were presented [5S0-52], but problems are not solved. First,
the protocol could be debated. For instance, some stud-
ies propose to cast doubt on the nature of the presented
character(s) to avoid bias induced by prejudices (human
are presented as artificial). Second, the computation of
the overall believability score is complex. For instance,
in case of a multiple-question form, experimenters may
have too much influence on the results. Next, it is also
necessary to decide if judges are actors or only specta-
tors. Although actors can actively test evaluated charac-
ters, spectators are more focused on them and can notice
much more details in the behaviors. Finally, the choice of
the judges is really important. Cultural origins [50] and
level of experience [53] may have a noticeable impact on
believability scores.

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.

DOI: 10.1002/cav

Virtual entities using anticipatory capacity

REFERENCES

1. Bates J. The nature of characters in interactive worlds
and the Oz project. Technical Report CMU-CS-92-
200, School of Computer Science, Carnegie Mellon
University, 1992.

2. Van Welbergen H, Basten BJH, Egges A, Ruttkay ZM,
Overmars MH. Real
a trade-off between naturalness and control. In
Eurographics—State-of-the-Art-Report, Pauly M,
Greiner G (eds). Eurographics Association, Munich,
2009; 45-72.

3. Ho C-C, MacDorman KF, Dwi Pramono ZAD. Human
emotion and the uncanny valley: a GLM, MDS,
and Isomap analysis of robot video ratings. In HRI
"08: Proceedings of the 3rd ACM/IEEE International
Conference on Human Robot Interaction. ACM,
New York, NY, 2008; 169-176.

4. Groom V, Nass C, Chen T, Nielsen A, Scarborough
JK, Robles E. Evaluating the effects of behavioral
realism in embodied agents. International Journal of
Human—Computer Studies 2009; 67(10): 842-849.

5. Buche C, Jeannin-Girardon A, De Loor P. Simulation
theory and anticipation as a basis for interactive vir-

time character animation:

tual character in an uncertain world. Application to
a human-—virtual characters interaction for juggling.
Computer Animation and Virtual Worlds (CAVW),
Computer Animation and Social Agents (CASA’11)
Special Issue 2011; 22(2-3): 133-139.

6. Hugon M, Massion J, Wiesendanger M. Anticipa-
tory postural changes induced by active unloading and
comparison with passive unloading in man. Pflugers
Arch 1982; 393: 292-296.

7. Dufossé M, Hugon M, Massion J. Postural forearm
changes induced by predictable in time or voluntary
triggered unloading in man. Brain Research 1985; 60:
330-334.

8. Berthoz A. The Brain’s Sense of Movement. Harvard
University Press, Paris, 2000.

9. Hoffmann J, Berner M, Butz MV, Herbort O,
Kiesel A, Kunde W, Lenhard A. Explorations of
anticipatory behavioral control (ABC): a report from
the cognitive psychology unit of the University of
Warburg. In Cognitive Processing, Vol. 8. Epub,
University of Wiirzburg, 2007; 133-142.

10. Pezzulo G, Hoffmann J, Falcone R. Anticipation and
anticipatory behavior. Cognitive Processing 2007;
8(2): 67-170.

11. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor
cortex and the recognition of motor actions. Cognitive
Brain Research 1996; 3(2): 131-141.

12. Hesslow G. Conscious thought as simulation of
behaviour and perception. Trends in Cognitive Sci-
ences 2002; 6(6): 242-247.

123



Virtual entities using anticipatory capacity

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

124

Brooks RA. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automa-
tion 1986; 2(1): 14-23.

Epicure. Lettre a Hérodote. -200.

Bergson H. Matiére et Mémoire. Presses Universitaires
de France (PUF), Paris, France, 1896.

Hume D. Traité de la Nature Humaine. Aubier,
1740.

Husserl E. Méditations Cartésiennes. Vrin, Paris,
1992.

Colwill RM, Rescorla RA. Postconditioning devalu-
ation of a reinforcer affects instrumental responding.
Journal of Experimental Psychology. Animal Behavior
Processes 1985; 11(1): 120-132.

Tolman EC. Principles of purposive behavior. Psychol-
ogy: A Study of a Science 1959; 2: 92—-157.

Kunde W, Hoffmann J, Zellmann P. The impact of
anticipated action effects on action planning. Acta
Psychologica 2002; 109(2): 137-155.

Kunde W, Koch I, Hoffmann J. Anticipated action
effects affect the selection, initiation, and execution
of actions. The Quarterly Journal of Experimental
Psychology Section A 2004; 57(1): 87-106.

Hoffmann J. Anticipatory behavioral control. Anticipa-
tory Behavior in Adaptive Learning Systems: Founda-
tions, Theories, and Systems 2003: 44—65.

Berthoz A. Emotion and Reason. Oxford University
Press, Oxford, 2006.

Brunia CHM. Neural aspects of anticipatory behavior.
Acta Psychologica 1999; 101: 213-242.

Craik K. The Nature of Explanation. Cambridge Uni-
versity Press, Cambridge, 1943.

Riegler A. The role of anticipation in cognition.
In Computing Anticipatory Systems (CASYS) Inter-
national Conference. AIP Conference Proceedings,
Vol. 573. American Institute of Physics, College Park,
MD, 2001; 534-541.

Rosen R. Anticipatory Systems. Pergamon Press,
Oxford, 1985.

Butz MV, Sigaud O, Gérard P. Anticipatory behav-
ior: exploiting knowledge about the future to improve
current behavior. In Anticipatory Behavior in Adap-
tive Learning Systems, Vol. 2684, Butz MV, Sigaud O,
Gérard P (eds), Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 2003; 1-12.

Watkins CJCH. Learning from delayed rewards, PhD
thesis, Cambridge University, Cambridge, England,
1989.

Rummery GA, Niranjan M. On-line g-learning using
connectionist systems. Technical Report, 1994.
Sigaud O, Wilson SW. Learning classifier systems:
a survey. Journal of Soft Computing 2007; 11(11):
1065-1078.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

C. Buche and P D. Loor

Simons DJ, Chabris CF. Gorillas in our midst: sus-
tained inattentional blindness for dynamic events.
Perception 1999; 28: 1059-1074.

Hawkins J, George D. Hierarchical temporal mem-
ory: concepts, theory, and terminology. Numenta Inc.
Whitepaper, 2006.

Davidsson P. A framework for preventive state antic-
ipation. Anticipatory Behavior in Adaptive Learning
Systems: Foundations, Theories, and Systems 2003:
151-166.

Laird JE. It knows what you’re going to do: adding
anticipation to a quakebot. In Proceedings of the
Fifth International Conference on Autonomous Agents,
Miiller JP, Andre E, Sen S, Frasson C (eds). ACM
Press, Montreal, 2001; 385-392.

Labbé V, Sigaud O. Anticipation of periodic move-
ments in real time 3D environments, In Proceedings of
the ABIALS 2004 Workshop, Los Angeles, CA, 2004;
51-61.

Johansson B, Balkenius C. An experimental study of
anticipation in simple robot navigation. In Anticipa-
tory Behavior in Adaptive Learning Systems: From
Brains to Individual and Social Behavior. Springer,
Heidelberg, 2007.

Buche C, Chevaillier P, Nédélec A, Parenthoén M,
Tisseau J. Fuzzy cognitive maps for the simulation
of individual adaptive behaviors. Computer Animation
and Virtual Worlds (CAVW) 2010; 21(6): 573-587.
Morineau T, Hoc JM, Denecker P. Cognitive levels
of control in air-traffic radar controller activity. Inter-
national Journal of Aviation Psychology 2003; 13:
107-130.

Stoffregen TA, Gorday KM, Sheng Y-Y, Flynn SB.
Perceiving affordances for another person’s actions.
Journal of Experimental Psychology: Human Percep-
tion and Performance 1999; 25: 120-136.

Julliard F, Gibet S. Reactiva’ Motion project: motion
synthesis based on a reactive representation. In GW
"99: Proceedings of the International Gesture Work-
shop on Gesture-Based Communication in Human—
Computer Interaction. Springer-Verlag, London, 1999;
265-268.

Multon F, Ménardais S, Arnaldi B. Human motion
coordination: a juggler as an example. The Visual
Computer 2001; 17(2): 91-105.

Laroque PH, Gaussier N, Cuperlier N, Quoy M,
Gaussier PH. Cognitive map plasticity and imitation
strategies to improve individual and social behaviors
of autonomous agents. Journal of Behavioral Robotics
2010; 1(1): 25-36.

. Cybenko G. Approximation by superpositions of a sig-

moidal function. Mathematics of Control, Signals and
Systems 1989; 2: 303-314.

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.

DOI: 10.1002/cav



C. Buche and P. D. Loor

45.

46.

47.

48.

49.

50.

51.

Comp. Anim. Virtual Worlds 2013; 24:111-125 © 2012 John Wiley & Sons, Ltd.

Kipp M, Neff M, Kipp KH, Albrecht I. Towards natural
gesture synthesis: evaluating gesture units in a data-
driven approach to gesture synthesis. In Proceedings of
the 7th International Conference on Intelligent Virtual
Agents. Springer-Verlag, Berlin, 2007; 15-28.

van Welbergen H, Basten BJH, Egges A, Ruttkay
ZM, Overmars MH. Real time character anima-
tion: a trade-off between naturalness and control.
In Eurographics—State-of-the-Art-Report, Pauly M,
Greiner G (eds). Eurographics Association, Munich,
2009; 45-72.

Tani J, Nishimoto R, Namikawa J, Ito M. Codevelop-
mental learning between human and humanoid robot
using a dynamic neural network model. /EEE Trans-
action on Systems, Man and Cybernetics—Part B:
Cybernetics 2008; 38: 43-59.

Aubry M, De Loor P, Gibet S. Enhancing robust-
ness to extrapolate synergies learned from motion cap-
ture, In Casa 2010, 23rd International Conference on
Computer Animation and Social Agents, Saint-Malo
(France), 2010; CD.

Turing AM. Computing machinery and intelligence.
Mind 1950; 59(236): 433-460.

Mac Namee B. Proactive persistent agents: using sit-
uational intelligence to create support characters in
character-centric computer games, PhD Thesis, Trinity
College Dublin, 2004.

Gorman B, Thurau C, Bauckhage C, Humphrys M.
Believability testing and Bayesian imitation in inter-
active computer games. In From Animals to Animats 9,
Vol. 4095. Springer, Rome, 2006; 655-666.

DOI: 10.1002/cav

Virtual entities using anticipatory capacity

52. Livingstone D. Turing’s test and believable Al in
games. Computers in Entertainment 2006; 4(1): 6.

53. Bossard C, Benard R, De Loor P, Kermarrec G,
Tisseau J. An exploratory evaluation of virtual football
player’s believability. In Proceedings of 11th Virtual
Reality International Conference (VRIC’09), Richir S,
Shirai A (eds), Laval, France, April 2009.

AUTHORS’ BIOGRAPHIES

C. Buche (1979) is an associate pro-
fessor at the National Engineering
School of Brest, which belongs to
the European University of Britain, a
member of the IHSEV team of the
LAB-STICC and a member of the
European Center for Virtual Reality
(CERV). His research concerns the

simulation of adaptive behaviors. He is the leader of the
JABU project.

P. De Loor (1968) is a professor
at the National Engineer School of
Brest. He is the leader of the IHSEV
team of the LAB-STICC Labs. He
is interested in the link between arti-
' ficial intelligence, cognitive science

’J\ and virtual reality.

125



