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Abstract
This paper is dedicated to the study of existing approaches that explicitly use men-
tal simulation. Current implementations of the mental simulation paradigm, taken
together, computationally address many aspects suggested by cognitive science
research. Agents are able to find solutions to nontrivial scenarios in virtual or phys-
ical environments. Existing systems also learn new behavior by imitation of others
similar to them and model the behavior of different others with the help of spe-
cialized models, culminating with the collaboration between agents and humans.
Approaches that use self models are able to mentally simulate interaction and to
learn about their own physical properties. Multiple mental simulations are used to
find solutions to tasks, for truth maintenance, and contradiction detection. How-
ever, individual approaches do not cover all of the contexts of mental simulation
and most rely on techniques which are only suitable for subsets of obtainable
functionality. This review spans through four perspectives on the functionality of
state-of-the-art artificial intelligence applications, while linking them to cognitive
science research results. Finally, an overview identifies the main gaps in existing lit-
erature on computational mental simulation and provides our suggestions for future
development.
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1 INTRODUCTION

Interactive virtual environments pose a wide variety of chal-
lenges for intelligent agents, especially to make decisions in
order to reach their goals. The difficulty of decision-making
tasks rises quickly by introducing continuous space and real
time into question.1 It also becomes increasingly harder to
build intelligent agents that can meaningfully interpret and act
in unknown situations.

Classical approaches to decision-making, such as produc-
tion systems,2,3 semantic networks and other formal knowl-
edge representation frameworks4 require domain experts to
provide descriptions of the agents’ environments, the types
of objects to be used, and entities to interact with.5 Upon
these approaches, learning algorithms have been used to learn
new rules6,7 and policies8 that tell the agent how to behave in
various situations.

However, their application is limited when dynamic envi-
ronments are considered,9 where agents must assess multiple
interactions between entities and their environment, such as
the effects of collision, object shape, action timing, and visual
occlusion on behavior. Research efforts have been made to
address the issues posed by dynamic environments and have
yielded important results, such as in robotics,10 but chal-
lenges still remain that span over several research fields.
Concurrently, cognitive architectures have been proposed to
integrate multiple techniques into autonomous agents that
are better suited for dynamic environments, but some sig-
nificant aspects such as anticipation and adaptation are still
weakly integrated11 in existing approaches. A recent review12

also describes the relevance of embodied simulation for
social interaction in robots, where the authors conclude that,
while this approach would benefit social robots, existing
models remain scattered. Other authors13 also point to the
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potential advantages of a more complete computational model
for human–robot interaction. In this work, we focus on deriv-
ing the outline of a functional computational approach, and
hence, we broaden our study to encompass more general traits
of the simulation paradigm.

For intelligent agents to interact with their environment
and other agents, they must have an understanding of how
the world around them functions, what effects their actions
will have, and what decisions are optimal in given scenar-
ios. With the aim to inform the implementation of such an
agent, this paper focuses on mental simulation-based anticipa-
tion. This paradigm has received moderate attention by other
researchers, but insufficiencies exist and a generic approach
that can function in both simple and complex scenarios has
not yet been proposed.

The mental simulation paradigm enjoys significant inter-
est from the cognitive science community.14–18 It is used to
explain how humans make certain predictions for making
decisions, imagining “what if” scenarios (multiple worlds)
and revisiting past events in novel ways.19 Moreover, there
exists evidence that mental simulation is not strictly a human
capability, but that some animals may also be able to perform
it for goal-oriented decision-making.20 The principle of men-
tal simulation consists in constructing an imaginary world
that can function on its own, based on which various future
states of the environment can be inferred and decided upon,
resulting in an individual’s behavior.

With respect to this principle and considering its multidis-
ciplinary nature, we present the motivation for this work by
drawing connections between mental simulation in humans
and computer simulations, and discuss how these fields can
be merged into various applications through virtual reality
(Section 2).

Afterward, this survey aims to identify and classify exist-
ing approaches in literature that rely on the mental simulation
paradigm or that make use of it to enhance the functionality of
an agent. The technique of using computational mental simu-
lation in decision-making can be applied in various contexts
depending on the type of environment, whether simulation
targets are objects or intelligently behaving entities and the
level of realism the simulations reflect.

Consequently, our study is structured based on four ques-
tions about the application of mental simulation in an agent:

• Where is the mental simulation based system used?
(Section 3)

• What is mental simulation used for within these systems?
(Section 4)

• Why is mental simulation useful in a given case?
(Section 5)

• How do these systems implement computational mental
simulation? (Section 6)

To answer these questions, we analyze the properties of
existing approaches from each point of view. Hence, to answer
where these systems are used, we compare approaches that are

applied to virtual reality and those which have a robotic imple-
mentation. Thereafter, we investigate what these systems are
able to anticipate by making use of their mental simulation
capabilities, by surveying their ability to predict physical phe-
nomena and behavioral traits of other agents. From the point
of view of cognitive science, we are also interested in why
they require mental simulation—that is, which of the cog-
nitive functions, namely, prospection, navigation, theory of
mind (ToM), and counterfactual reasoning, are accomplished
through this mechanism. Finally, we look into how these sys-
tems are built, where we classify approaches based on three
major schools of thought in artificial intelligence: symbolic,
sub-symbolic, and analogical representation systems.

This structure allows a clearer analysis of existing
approaches that use the simulation paradigm and shows how
various implementations fit into a generic view of using men-
tal simulation for decision-making. Moreover, to the best of
our knowledge, there exists no comprehensive survey on com-
putational approaches to mental simulation that discusses all
facets of the paradigm in an integrative manner. The remain-
der of this paper is structured into these four aspects of
the computational use of mental simulation and their more
specific sub-cases.

Finally, our study concludes with an overview (Section 7) of
existing approaches and how they cover the multiple contexts
of using simulation in decision-making.

2 APPLICATIONS OF MENTAL
SIMULATION TO COMPUTER ANIMATION
AND VIRTUAL REALITY

Before diving into the discussion about the overall properties
of existing approaches to computational mental simulation, it
is important to present the insight that motivated our work.

The very term of mental simulation implies a way to
reproduce external processes in one’s mind, much like simu-
lation has been used since the advent of computers to model
physical phenomena, animal behavior, social interaction, and
many other topics at varying levels of abstraction (e.g., from
molecular dynamics to planetary systems). This technique is
especially useful when the modeled process cannot be analyt-
ically predicted, being the result of a great number of complex
interactions over time.

Like with computer simulations, mental simulations may
include various levels of detail and scale. While it is true
that arguably all such mental scenarios are constructed from
sensory input (hence, the focus of related work on sensory
prediction21), humans can easily imagine more than just what
they can directly sense, by using analogies to abstract over
unknown details (e.g., thinking of atoms as tiny spheres or
radio waves as ripples on a water surface). Most importantly,
mental representations tend to be structurally and function-
ally equivalent to their real counterparts.22 While they work
differently from how the brain obtains these representations,
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simulation systems like physics engines show a remark-
able resemblance: real objects are approximated by platonic
shapes or more complex mesh structures, and their dynam-
ics are simulated over a large number of small steps, which
makes it possible to express virtually continuous interactions
between them (e.g., collisions and attractive forces).

Similar to how human behavior is shaped by the fact
that physical reality and imagination share some common
mechanisms,23 computational mental simulation may help to
achieve more credible agent behavior (Section 2.1), create
better virtual environments for training, and build intelli-
gent agents that use inner worlds as reasoning mechanisms
(Section 2.2), to name a few.

2.1 Computer animation

Realistic animation of virtual characters is a challenging task,
and a large body of research has focused on finding techniques
to produce believable behavior. Embodied approaches have
resulted in agents that take the physics of their environment
into account.24 Moreover, anticipation has been deemed the
hallmark of skilled motions,25 as motions and gestures that
we consider believable are often shaped by a preparation for
what is to happen.

Mental simulation is applicable to virtual characters, to
obtain believable behavior through continuous anticipation.26

Reacting to other agents and one’s own actions as perceived
by others has also been approached with the use of mental
simulation coupled with existing cognitive architectures27,28

to obtain adaptive behavior.
The difficulty of obtaining believable characters mainly

comes from the subjectiveness of the topic. However, using
cognitive mechanisms similar to those found in humans could
bring them a step closer to behavior perceived as human-like,
and therefore, more “believable.”

2.2 Virtual reality

We can identify two levels at which mental simulation and
virtual reality can be brought together.

First, in the context of virtual environments for training in
domains where situated anticipation is a critical human skill,
such as firefighting, computational mental simulation could
be used in association with intelligent tutoring systems29 to
teach trainees to make better use of this technique themselves
in practice.30

Second, we consider virtual reality as the basis for the inner
world of an intelligent agent. With recent advances in simula-
tion techniques,31 deep learning,32 and generative models,33

the possibility of perceiving the world as an analogous vir-
tual environment is becoming a real option. More precisely,
computational mental simulation could benefit from advances
in virtual reality, computer animation, and machine learning,
making it reasonable to discuss using a virtual environment

as the “mind” of an agent, which could be itself populated by
other agents (representations of real objects/individuals) that
interact in complex ways within this inner world.

3 ENVIRONMENT TYPE

Artificial intelligence applications, since their advent in the
second half of the 20th century, have diversified to tackle
many areas of human intelligence. Research in this field has
led to optimal algorithms on a number of problems and super-
human performance on others such as in the 90s, when the
Deep Blue computer34 won against a chess world champion.
However, humans still excel in many quotidian tasks such as
vision, physical interaction, spoken language, environmental
and behavioral anticipation, or adapting ourselves in the con-
stantly changing conditions of the natural world in which we
live. To this end, hard problems have often been idealized in
computer simulations (virtual reality) where research could
focus on the essentials of the artificial agents’ intelligence
without the need to solve low-level problems like noisy per-
ception, motor fatigue, or failure to name a few. Once matured
in virtual reality, such agents would be ready for embodiment
into a robotic implementations where, only few prove to be
feasible. From this point of view, we can categorize exist-
ing approaches through the prism of environment complexity,
namely, those that have been implemented in virtual environ-
ments (Section 3.1), and those that have a robotic embodiment
(Section 3.2).

3.1 Virtual world

The challenge for an intelligent agent in a virtual world is
to cope with potentially complex behavior, but in an accessi-
ble sandbox context. The virtual world is a controlled envi-
ronment where observing events and object properties are
simplified so that agent development can focus on behavior
while neglecting problems that arise from interfacing with
the world. An example of such simplicity is given by the
trajectory of an object moving under the effects of grav-
ity, whose exact coordinates can be directly sampled by the
agent without requiring to capture, segment, and analyze
an image. The main characteristic that describes this envi-
ronment type is the focus on behavior, but this brings the
drawback of possible poor scaling of developed methods
towards the real environment due to noise, uncertainty, and
interface issues.

Regarding computational approaches to mental simula-
tion, most existing works have been evaluated in virtual
environments of varying complexity. Discrete environments
provide a simple but informative view of the behavior of
an agent,35 under controllable circumstances. As complex-
ity rises, namely, the transition from discrete to continuous
space, the challenge for intelligent agents to perform tasks
increases significantly, but it also enables a wider range of
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behavior. Only now does the use of mental simulation begin to
find its applications and advantages over traditional methods
in agent decision-making. Literature provides mental simu-
lation approaches to constrained two-dimensional continuous
space,27,36–38 which focus on developing models to cope with
the increased complexity of the environment. Other works
go even further, to continuous three-dimensional space where
trajectories are more dynamic as human users intervene26 and
collisions39 or occlusions40 take place.

A recent trend that relates to the paradigm of mental
simulation is the application of Monte Carlo tree search
(MCTS) to real-time video games, as an enhancement to
its history of success in turn-based games. Succinctly, if
given the capability to simulate the outcomes of its actions,
an agent can rely on MCTS planning algorithms such as
Upper Confidence bounds applied to Trees (UCT)41 to per-
form more efficiently in real-time strategy games42,43 or
similar scenarios. We note that MCTS consists in planning
algorithms reliant on a simulator—that is, a way to obtain
the effects of performed actions—while mental simulation
encompasses the mechanisms for constructing such a simu-
lator, which could eventually be used together with heuristic
planning techniques.

3.2 Real world

In the real world, agents require a physical embodiment
(or interface) in order to interact with the environment. The
challenge of performing mental simulation within a real setup
is to anticipate the behavior of real entities, which are per-
ceived through noisy and fault-prone sensory input. In addi-
tion to issues that exist in virtual worlds, reality poses further
obstacles to object detection and recognition, and therefore
can be viewed as a significantly more complex version of
a continuous three-dimensional virtual world. Systems that
aim to achieve functionality in the real world must also solve
interface problems in order to exhibit their behavior. Interface
issues include acquiring adequate information from sensors
and effectors, and the possibility of externally caused damage
to the system and environment noise.

Several systems using mental simulation have been devel-
oped as dually compatible with both virtual environments
and robotic embodiments. This allowed the authors to eval-
uate the cognitive process of their approach40,44 in virtual
reality where the agent can perform more dexterous actions
that its robotic counterpart. Computer simulations were also
used by27,36 to evaluate their approach to improving a robot’s
performance within a team.

Other researchers have directly approached reality with
robots that use mental simulation to support their natural lan-
guage skills,45 reasoning,28 and resilience.46 We note that
these are difficult problems in robotics, and it is interesting
that mental simulation is able in these cases to decrease com-
plexity of the original tasks and allow robots to perform better
in the real world.

4 MENTAL SIMULATION TARGETS

Depending on what the agent encounters in its environment,
the use of mental simulation in existing research can be
divided into two categories: inanimate objects and entities,
which exhibit some form of behavior. In the following, we
explore what existing approaches use mental simulation for,
namely, the physical and social challenges of the world they
inhabit (Sections 4.1 and 4.2).

4.1 Environmental aspects

One aspect of mental simulation is represented by anticipat-
ing how insentient systems evolve based on a model of the
laws that govern their behaviors. Such systems can be com-
posed objects that move according to the laws of physics or
deterministic mechanisms such as, for example, a light switch
that can be used to turn a light bulb on and off. Such sys-
tems are “simple” in the sense that the underlying rules are
deterministic and exhibit little or no change over time, for
example applying a force to an object will always trigger
a mass-dependent acceleration on that object; this does not
exclude the potential complexity of such system.

Possessing a mental model of physical phenomena allows
humans to anticipate the consequences of actions that are
performed in the environment.47 Having a representation of
properties such as mass, gravity, elasticity, and friction are
necessary in successful predictions of mechanical outcomes.
Humans tend to construct a mental image of a given scenario,
as it would visually appear in reality, in order to reason in cer-
tain contexts.48 The ability of humans to analyze environmen-
tal information has been linked to their capability of focusing
on relatively small sets of data, through the process of atten-
tion management,49 due to not being able to process the
entire depth of the observable world. Nevertheless, humans
are proficient at high-precision tasks such as anticipating and
counterbalancing weights using body movements.50

A wide range of approaches have been proposed to
control an agent’s behavior in complex physical environ-
ments, with arguably one of the most successful being those
based on reinforcement learning.8,51 While particularly well
suited for noisy, real-world data, these approaches usually
assume a direct function between the agent’s sensors and
effectors, which can ultimately lead to limited scalability
of their adaptiveness52 in novel scenarios. In this sense,
our focus turns to adaptability using internal model-based
approaches.53

From the perspective of anticipating environmental aspects,
existing research on computational mental simulation makes
use of this paradigm to predict object trajectories26 and
eventual collision between them.54 Mental models can also
serve to represent objects that exit the perception field28,45

and enable an agent to maintain a consistent world view in
the absence of direct input. Representing collisions between
objects allows agents to evaluate their actions,54 determine
their own appearance,46 or interact with objects of interest.38
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4.2 Behavioral aspects

The second use case of mental simulation is represented by
anticipating behaviors of more complex and autonomous enti-
ties. This class of entities is comprised of systems (both artifi-
cial and natural) that exhibit some form of non-determinism,
free will or high-behavior complexity. Characteristics of envi-
ronmental mental simulation are inherited and extended in
anticipating complex entities, and if the assumption is made
that these entities are also able to make inferences on others,
several levels of anticipation arise. For example, in the sce-
nario where John knows that Mary falsely thinks that Joe has
a toy car, John has a two-level mental image of his friends,
which allows him to know that Joe does not own a toy car
(Level 1) but Mary thinks he does (Level 2).

Three types of behavioral mental simulation can be distin-
guished based on which entity is considered for such reason-
ing, namely, entities that have a high degree of resemblance
(Section 4.2.1), those that do not (Section 4.2.2), and one’s
own self (Section 4.2.3).

4.2.1 Agents with similar structure
The context of anticipating and learning from the behavior of
other entities, which are similar in structure, is considered a
special case due to the possibility of using one’s own internal
structure to achieve such inference. In its simple form, one
can consider for example two identical robots (with identical
internal states) that when put in exactly the same conditions
will behave in the same manner.

One of the requirements for understanding similar others
is recognizing what they intend to do. The challenge in this
context is to anticipate goals and actions based on the fact
that the other entity is similar or identical in structure and
reasoning mechanisms.

Humans are not only able to reproduce behavior55 but
can also understand the underlying goals of another’s
actions.56 Experiments showed that intention recognition can
be achieved from both successful and failed attempts to per-
form an action, given the performer was a human and not a
mechanical device.57,58

To mentally simulate the actions of other entities that
closely resemble themselves, agents in existing approaches
use their own mechanisms to infer useful information
about chosen targets (examples in Figure 1). Body map-
ping techniques are used, generally based on simplified
skeleton structures,59 to create the gestural information
link between agents. Once mapped, motion patterns are
matched against the agent’s inventory of actions in order to
infer intentions.40,44

Due to the fact that mental simulation targets have sim-
ilar behavior mechanisms and embodiments, the need for
additional specialized models for others’ behavior is avoided.
Unfortunately, when differences increase, this technique leads
to the occurrence of the correspondence problem.60,61 More-
over, current implementations are limited to a predefined
inventory of actions, based on a specific model of self and
others, restricting them from more flexible behavior.

Subsequent to identifying the intentions of a similar other,
the challenge is to extend one’s knowledge by learning from
observed actions. Learning complexity in this context is still
relatively reduced because, in this case, novelty is expressed
as different utilizations of the same underlying mechanisms.

In a close relation with understanding intention, humans
are able to learn novel methods of achieving the intended
goal. The phenomenon of imitation in humans and animals is
covered in a wide range of research, clustered into two main
contexts by Rizzolatti62: the capacity to replicate an observed
action and to learn new behavior through observation.

FIGURE 1 Excerpts from works using mental simulation in understanding similar agents
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FIGURE 2 Excerpts from works performing imitation learning with the aid of mental simulation

FIGURE 3 Excerpts from works performing mental simulation-based behavior prediction on agents with different structure

Depending on their implementation, current approaches
have mechanisms to extend their knowledge base by observ-
ing other agents or human-experts performing actions
(examples in Figure 2). An example of such mechanism are
behavior trees, branches of which can be extended with new
nodes.59 Prototypic fuzzy cognitive maps have been employed
to learn by imitation without modifying the structure of the
prototypes themselves.38,63 Software images64 have been pro-
posed as a framework for enabling agents to identify similar
others and to learn by imitation.

The use of one’s own mechanisms to reason about others
provides a fast and convenient way to learn new behavior.
However, the occurrence of the correspondence problem still
imposes limitations on agents. Knowledge extension is not
performed when the internal structure does not correspond
between agents.

4.2.2 Agents with different structure
The general case of understanding other entities, involving
anticipation and learning, requires the capability to formulate
theories about how structurally different others behave. Using
one’s own mechanisms for this purpose is fundamentally lim-
ited, and therefore, the challenge is to obtain a generic method
of representing others.

The general challenge in the interaction with a heteroge-
neous agent environment is to anticipate complex entities,
which may be dissimilar to oneself and to predict what they
believe and how they will act. In this case, prediction of
environmental changes should also be taken into account,
as behavior generally depends on changes in the agent’s
surroundings.

Whether implicit or explicit, a certain level of anticipation
is required by any autonomous entity for it to function in its
environment. The phenomenon of anticipation has been stud-
ied in a variety of domains such as biology, neuroscience,
cognitive science, and artificial intelligence.65

The predominant approach in existing implementations is
represented by the use of custom theories or models of other
entities (examples in Figure 3). Agents place themselves
“in the shoes of others” and mentally simulate what their
intentions and beliefs are35, based on the information they
have available.

Existing approaches use simplified models to predict essen-
tial aspects of the behavior of other entities. Some agents
use feedback to improve their models, in order to more accu-
rately anticipate behavior. The drawback of current methods is
that a general-purpose approach for anticipation has not been



POLCEANU AND BUCHE 7

proposed. Models are tailored by domain experts for specific
scenarios, which fail when faced with novel contexts.

Understanding other entities leads to the challenge of being
able to collaborate and form teams. Anticipating team mem-
bers becomes important towards the achievement of common
goals. As with other forms of complex anticipation, this con-
text includes both environmental and behavioral simulation.

Human interaction within a collaborative context relies on
several aspects of social cognition such as role-taking and
empathy. Being able to understand others, thereby developing
a ToM, enriches the cognitive ability of individuals to perform
social interaction.66

By adding models of humans in a collaborative context,
existing approaches (examples in Figure 4) make simulations
to determine the intentions of other members to improve team
performance,27 by adopting others’ point of view.45 Research
using simulation techniques in this context is focused on col-
laboration within human teams,36 while the agents have the
role of helpful companions. There exist, however, implemen-
tations that allow agent-to-agent collaboration.67

Team-oriented approaches can make decisions based on
simulations of others’ behavior. They are capable of taking

the perspective of other team members in order to understand
requests and act accordingly, but this is currently done using
expert-tailored cognitive models of the teammates (either
human or artificial). These implementations function in rela-
tively simplified scenarios and require further configuration
in case of scenario changes. Moreover, the agent’s emotional
system, seen as responses to an examination of self, others,
and environment, is not approached.

4.2.3 The self
Once capable of simulating the evolution of the environment
and other entities, the challenge is to achieve introspection and
include the self into these simulations. This context requires
a functional model of self and information about possible
interactions with the surroundings.

Recent studies suggest that common mechanisms are
responsible for the accounts of ToM and awareness of self
mental states or “theory of own mind”.68–70

Existing implementations approach this case using either
preassigned physical selves or by creating their own mod-
els based on interactions with the environment (examples in
Figure 5). Physical engine-based approaches enable agents

FIGURE 4 Excerpts from works using mental simulation for collaboration with humans or other robots

FIGURE 5 Excerpts from works performing mental simulation of the agent’s own self
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to emulate themselves carrying out an action54 and lever-
age mental simulation results to make decisions in reality.
Such mental simulations allow agents to evaluate strategies
in advance and choose the optimal course of action.38 This
can be done without a predefined model of the agent, by
using primitives to automatically construct simplistic models
of themselves, using sensory data.46

Virtual physics models help agents to interact with the envi-
ronment. Updating the self model during interaction makes
such systems more robust to changes such as unexpected
damage. By automatically creating the models, expert inter-
vention is minimized. Even though virtual selves may con-
flict with reality, errors can be used to improve the current
model. However, a trade-off occurs between model simplic-
ity and accuracy as faster simple models may lack details
while slower complex ones lead to erroneous mental simu-
lation. Currently, self models do not have adaptable levels
of detail, and approaches are generally limited to the phys-
ical self. Moreover, few approaches consider the need for a
detailed representation of the self.

5 COGNITIVE FUNCTION

From the point of view of cognitive science, we investigate
why existing approaches use mental simulation. Research71

suggests that mental simulation can be regarded as a common
mechanism—that is, overlapping areas of brain activity—in
the brain for remembering events, performing prospection,
navigation and accounting for a ToM. More recent studies72

also connect counterfactual reasoning—thinking about “what
could have been”—to related brain regions used by the pre-
viously mentioned cognitive functions. Each of the four
cognitive functions discussed in this section is illustrated
in Figure 6.

5.1 Prospection

Prospection is a form of self-projection into the future,
through which one anticipates future events to find actions
which are most favorable towards achieving a certain goal.
Great emphasis is placed on the role of mental simulation
on this ability in cognitive science research,73 while compu-
tational approaches have recently begun to make use of the
paradigm in artificial intelligence systems.26,39

Planning has been one of the first research directions since
the advent of artificial intelligence (for an in-depth review,
see Wilkins74). With the development of novel MCTS vari-
ants (for survey, see Browne et al.75), efficient algorithms
have been proposed for more complex environment condi-
tions such as real-time strategy games.43 Existing approaches
using MCTS show promise in providing an efficient way to
make decisions in complex scenarios, but all such approaches
rely on the assumption that a simulator is provided which can
compute future states of the environment on demand. For sim-
pler scenarios like games, this simulator can be developed as
the game mechanics are known and accessible, but generally
this is not the case for agents that interact with the real world,
where such a simulator does not exist.

In this sense, mental simulation is a candidate mechanism
for enabling the prospection ability required by general pur-
pose planners. Existing approaches make use of the mental
simulation paradigm to make predictions of the behavior of
other entities38 in order to reach their goals, to evaluate their
own actions,54 and also as a medium for estimating which
actions can provide more information about an unknown state
of the agent’s embodiment in the world.46

5.2 Navigation

The ability of humans to recall places for navigation pur-
poses differs from map-like artificial systems in that it also

FIGURE 6 Birthday present example: in order to arrive in the position to hand the gift, the agent was required to (a) reason on which type of gift would be
most suitable, (b) find which way through town would be best to go to the store, (c) have an understanding of what the other wishes for a gift, and (d) imagine
that not bringing a present would have had undesirable results
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elicits contextual information based on previous visits of the
location in question. Intuitively, it is not difficult to imagine
why prospection would be beneficial to our ability as humans
to navigate efficiently: when performing navigation, memo-
ries, 76 and emotional information associated to certain places
that we visited in the past can make us prefer or avoid them.
If our memory had not provided us with a location-related
context, we would not be able to perform goal-oriented
navigation.

Navigation itself does not refer only to large-scale move-
ment. Within the meaning of navigation, we identify multiple
nuances that depend primarily on scale and the individual
who is performing it. Using mental simulation, an agent can
move its arm towards an object using different perspectives
than its own.45 Similarly, one can take the perspective of
another to infer a navigation plan.27,35,36,77 Larger scale self
navigation—that is, where the agent itself moves from one
location to another—can also be evaluated38 and anticipated37

through mental simulation-based prospection.

5.3 Theory of mind

The capability of an individual to assign mental states to one-
self and others is known in the literature as ToM.78 Function-
ally, possessing a model of others’ decision process, which
takes observations as input, enables the individual to deter-
mine goals, anticipate actions, and infer the causes of certain
observed behaviors. The two predominant approaches to how
the decision process is represented are the theory-theory,79

which relies on a “folk psychology” that is used to reason
about others in a detached way, and the simulation theory,80

which claims that the individual’s own decision mechanism
is used for inference (simulation), using pretend input based
on observations.

Simulation theory has received enthusiasm from artificial
intelligence researchers, arguably because it provides an inter-
esting and computationally feasible mechanism for reasoning
about other individuals. The “like me” approach81 has been
adopted in various social agents that interact with others in
virtual59 and real40,44 environments. It has also been used in
team scenarios to enable a robot to take the predicted behav-
ior of its team mates into account to improve its own plan.27,36

Theory-theory-based approaches are less common, but show
that “objectively” reasoning on the behavior of others can lead
to comparable results.35,77

5.4 Counterfactual reasoning

Whether expressing the regret that things could have been bet-
ter if only actions were taken, feeling relieved that the worst
scenario did not happen or simply imagining what would
have happened if past events were different, humans often
think in a counterfactual manner.82 Counterfactual reasoning
has been thoroughly documented in psychology83 through-
out the development of children and adults. This type of

inference has been studied within the more general problem
of causation.84

Interestingly, works that implement forms of counterfac-
tual reasoning into autonomous agents are scarce. Examples
include making use of this mechanism for minimizing regret
in games with incomplete information85. Mental simulation
has also been discussed as a mechanism for counterfactual
reasoning.86 However, computational approaches to inference
about what could have been, via mental simulation, are lim-
ited, focusing on relatively simple cases of object continuity28

under the form of integrating new knowledge into past events.

6 COMPUTATIONAL IMPLEMENTATION

Based on how computational mental simulation has been
approached in literature, we identify three main perspectives
on modeling the paradigm.

The first type of approach is given by traditional sym-
bolic systems, which model the process of mental simulation
through sets of rules and logical inference. This category is
characterized by a coarse level of granularity in prediction, as
the rules they use are abstracted away from low-level infor-
mation such as the detailed geometry of the environment,
collisions, or location of obstacles. The majority of existing
computational approaches to mental simulation are, at least
to some extent, symbolic systems. Some of the most rele-
vant examples of such agents27,28,36,77 are constructed on top
of well known cognitive architectures such as Adaptive Con-
trol of Thought - Rational (ACT-R)87 and Soar.88 Focus is
placed on goal recognition through mentally simulating oth-
ers’ actions using the agent’s own reasoning model40,44,59 and
on evaluating the outcomes of actions.39 Using a symbolic
approach, an agent would be able to perform mental simu-
lation on high-level information like beliefs and annotated
actions, but would require other, low-level tasks to be mod-
eled separately and abstracted so that it can be used as a
black box.

The second category consists in using sub-symbolic tech-
niques to make predictions in the form of mental simulations.
Granularity of the mental simulations is, in this case, finer as
trajectories are continuously taken into account.38 Likewise,
sensory information can also be predicted,37 which leads
to a plausible approach to implicit anticipation. However,
using only low-level controllers narrows the use of mental
simulation to specific targets.

Finally, the category of systems based on analogical
representations89,90 consists in approaches, which model their
environment as an internal virtual world.26 This allows agents
to change perspective,45 anticipate behavior,35 and generate
scenarios that help them obtain useful information about the
world and themselves.46 Using analogical representations91

provides a natural approach on mental simulation, similar to
mental imagery in humans.16 Nonetheless, existing computa-
tional approaches use specific models to perform this type of
mental simulation.
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7 DISCUSSION

Within this review, we examined computational approaches
that use mental simulation for decision-making by anticipat-
ing events in the environment and behaviors of entities that
populate it. The study was divided into four main sections,
each reviewing the state of the art through the prism of
where, for what, why, and how mental simulation was used.
Hence, relevant systems from literature have been discussed
and analyzed, to identify their strong and feeble characteris-
tics, within the context of the type of environment they aim
for, which phenomena they are able to predict, which cogni-
tive functions they achieve, and finally, the techniques used
for their implementation.

7.1 Analysis

The approaches that explicitly use mental simulation are
compiled in Table 1 for a complete view of the level to
which they address the aspects of this paradigm as sug-
gested by the cognitive science community. Additionally, we
investigate the way in which they achieved their functional-
ity and also whether or not their authors provided testable
proofs-of-concept or open source code.

Taken together, existing approaches cover all areas of
interest in using mental simulation as an anticipation and
decision-making technique; however, there exists no imple-
mentation that addresses all of them on its own. Neither does
any approach propose a generic way that makes it extensible
over all examined features simultaneously.

The majority of implementations have begun in virtual real-
ity, but fewer have taken the leap to robotic embodiments due
to dependencies on specific information about their environ-
ment. Those that do however pass into the real world are either
limited in the actions they can perform or rely heavily on
repositories of actions that are abstracted for the use within a
higher level framework.

Focus is placed on solving only a subset of the cognitive
functions associated with mental simulation, and this is done
using specific models of the task at hand. Hence, not many
elements are taken into account into mental simulation, for
example, anticipating trajectories but not collisions, or focus-
ing on only one of the environmental and behavioral aspects
of the environment, although they are generally interdepen-
dent. One of the cognitive abilities linked with the paradigm
of mental simulation—counterfactual reasoning—has been
scarcely approached and only in a relatively simplistic
fashion.

We have also discussed three trends in implementing
computational mental simulation, namely, those using sym-
bolic, sub-symbolic, and analogical representations. These
approaches vary in mental simulation granularity, that is,
the space and time scale to which an agent can per-
form a mental simulation of its environment. In essence,

coarse granularity leads to faster computation of abstract
knowledge, while fine granularity can cope with highly
detailed models of reality. The advantages and drawbacks of
these approaches are illustrated in Table 2.

Furthermore, as Table 2 also shows, the two major ways
of addressing anticipating the actions of other presumably
intentional entities in the environment—“like-me” and differ-
ent/unknown structure—stem from the two dominant theories
of how ToM is performed by humans: simulation theory and
theory-theory, respectively. In effect, this led to implemen-
tations that are constructed to resemble humans (or other
entities they may interact with) and use these models in men-
tal simulation, while the others attempt to create abstract
models of others’ behavior for prediction.

Overall, specific implementations are often preferred due
to convenience. However, this leads to limited functionality
when the environment and the behavior of simulated agents
change significantly. One example of technique, which is only
used in few implementations, is automatic model creation.
This enables the agent to infer its own body structure, but
it is not currently used for other physical entities. Another
example is represented by production rule systems, which
have relatively high expressive power, but are not used in
complex scenarios due to the difficulty of problem formaliza-
tion. Connectionist approaches also exhibit high performance
in creating efficient controllers, but learning rate drastically
decreases with the size of the network and are therefore only
used for specific tasks.

Finally, we investigated the availability of functional soft-
ware support for the computational approaches to mental
simulation. Few researchers have published runnable demon-
strations of their work (including videos, test cases, and
open-source code). For some works, only the cognitive archi-
tecture used is provided, but not the actual extension of the
architecture to the mental simulation paradigm.

This study has led us to identify several shortcomings of
existing works that use the simulation paradigm for anticipa-
tion and decision-making:

• Current approaches are constrained to function in relatively
specific setups, with few exceptions, which do not provide
access to the details of their implementation. Such excep-
tions that do aim to be more generic rely heavily on models
created by experts which tend to be difficult to obtain for
contexts with higher degree of complexity.

• Existing implementations are generally used in controlled
scenarios and are not designed to be fully autonomous.

• Although approaches exist that function in real time,
online learning is used only for specific tasks. The mech-
anism of the simulation paradigm, such as continuous
imagination-reality comparison in complex environments
and imaginative behavior, are not yet fully exploited.

• Due to either context simplicity or specific functionality,
believability is only achieved to a relatively low level.



POLCEANU AND BUCHE 11

TA
BL

E
1

O
ve

rv
ie

w
of

ar
ea

s
of

in
te

re
st

co
ve

re
d

by
re

le
va

nt
ex

is
tin

g
ap

pr
oa

ch
es

C
om

pu
ta

tio
na

lu
se

of
m

en
ta

ls
im

ul
at

io
n

W
he

re
?

(fo
r)

W
ha

t?
W

hy
?

H
ow

?
O

pe
n?

En
vi

ro
nm

en
ta

l
Be

ha
vi

or
al

V
ir

tu
al

w
or

ld
So

ur
ce

co
de

or
D

/C
,2

D
/3

D
a

R
ea

lw
or

ld
Tr

aj
ec

to
ri

es
C

ol
lis

io
ns

O
cc

lu
sio

ns
Si

m
ila

r
D

iff
er

en
t

Se
lf

Pr
os

pe
ct

io
n

N
av

ig
at

io
n

Th
eo

ry
of

m
in

d
C

ou
nt

er
fa

ct
ua

ls
Sy

m
bo

lic
Su

b-
sy

m
bo

lic
A

na
lo

gi
ca

l
de

m
o

av
ai

la
bl

eb

77
C

3D
✓

✓
✓

✓
✓

∼
45

✓
✓

✓
✓

✓
✓

28
✓

✓
✓

✓
✓

✓
59

C
3D

✓
✓

✓
✓

40
C

3D
✓

✓
✓

✓
✓

✓
✓

46
✓

✓
✓

✓
✓

∼
35

D
3D

✓
✓

✓
✓

✓
27

C
2D

✓
✓

✓
✓

✓
✓

✓
∼

44
C

3D
✓

✓
✓

✓
✓

✓
✓

36
C

2D
✓

✓
✓

✓
✓

✓
✓

∼
37

C
2D

✓
✓

✓
38

C
2D

✓
✓

✓
✓

✓
✓

✓
54

C
3D

✓
✓

✓
✓

✓
26

C
3D

✓
✓

✓
✓

✓
43

C
2D

✓
✓

✓
✓

a
V

ir
tu

al
w

or
ld

ca
te

go
ri

es
:d

is
cr

et
e/

co
nt

in
uo

us
an

d
tw

o-
di

m
en

si
on

al
/th

re
e-

di
m

en
si

on
al

.
b

Pa
rt

ia
ls

ou
rc

e
co

de
,s

uc
h

as
pr

ov
id

in
g

on
ly

th
e

m
ai

n
ar

ch
ite

ct
ur

e
so

ur
ce

s
bu

tn
ot

th
e

fu
ll

im
pl

em
en

ta
tio

n
of

th
e

ap
pr

oa
ch

,i
s

m
ar

ke
d

w
ith

∼
.



12 POLCEANU AND BUCHE

TABLE 2 Pros and Cons of approaches to computational mental simulation

Approach Pros Cons

“Like-me” ◊ Mechanism for goal inference ⧫ Correspondence problem

⧫ Specific

Different (unknown) ◊ Independent of other’s structure ⧫ More difficult to learn

◊ No assumptions

Symbolic ◊ High-level inference ⧫ Actions abstracted away

◊ Direct rules ⧫ Can miss details

Sub-symbolic ◊ Low-level control ⧫ Specific controllers

◊ Precise movement ⧫ Difficult to model interactions

Analogical ◊ Intrinsic ability to generate scenarios ⧫ Construction difficulty

◊ Multi-scale interaction

7.2 Insights into computational mental simulation

In attempt to overcome these shortcomings, we have
developed a generic agent architecture, which has mental
simulation as its core mechanism for decision-making, using
analogical representations.92 The genericity of the
open-source architecture was shown by instantiating it into
agents within environments with varying complexity such as
continuous space, real time, two and three spatial dimensions,
and varying embodiments.93,94 The cognitive process imple-
mented in our work is described in Figure 7, which constitutes
the conceptual framework to enable the capabilities studied in
this paper.

While the results have been encouraging, the main diffi-
culty consisted in automatically adapting the agent’s men-
tal models of its environment. As we have seen in related
works, conveniently implementing specific models leads to
a narrow range of applications for the resulting agent. In
response to this challenge, we suggested a heterogeneous
model approach, which can also accommodate machine
learning techniques, with the long-term goal of obtaining a
self-sufficient, adaptive, and autonomous agent that can make
decisions in a complex environment.

With regard to the pitfalls associated to existing implemen-
tations and challenges encountered in our own work on the

subject, we propose a number of insights, which we hope
will further guide the development of agents with mental
simulation capabilities:

• Mental simulation should be used as an integration
paradigm or a central architectural layer rather than a sepa-
rate module to an existing agent. A separation would most
likely lead to duplicated or translated information to and
from the module with possible loss of functionality, while
integrating the mechanism as a central part of the agent
would theoretically enable the agent’s entire knowledge to
be processed in a more coherent way.

• Whether with sensory information or arbitrary data struc-
tures, mental simulations should use a common represen-
tation. For the time being, pure sensor data may not be
suitable for an artificial agent to use as internal structure
even if it seems biologically plausible. Instead, intermedi-
ary analogical representations, such as geometric shapes or
complex meshes, could suffice until more powerful struc-
tures are developed. Regardless the choice, these repre-
sentations should be expressive enough to model physical
interaction.

• Temporal synchronization is necessary for the applica-
bility of mental simulations. The agent must keep track
of real and virtual time in order to correctly apply

FIGURE 7 Cognitive process of a mental simulation based agent at an arbitrary time t: the state of the real environment r(t) is transformed into a mental
image s(t + 1) through perception, from which alternative futures (s(t + n), s′

(t + n)) can be obtained, past events s(t − m) can be reenacted or changed to
produce “what if” scenarios (s′

). Decisions can be based on evaluating alternative futures
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simulated actions in the real environment. This also applies
in the case where mental simulations and environment
perception run at different time scales.

• In addition to synchronization, due to the concurrency of
simulation and reality, a number of simulated actions will
be inapplicable because by the time the mental simulation
reaches a result, the world would have progressed enough
to make early actions impossible and therefore invalidating
the entire prediction. A prediction can only be considered
valid if all the simulated actions are applied to the envi-
ronment; therefore, the agent must estimate the duration
of a simulation and block novel actions within that virtual
time interval.

• In a dynamic environment, mental simulations should take
the agent’s current action plan into account. This not only
avoids invalid predictions (such as failing to account for
actions in the near future, which may completely change
the outcome) but it also allows the agent to, in a way, regain
the time lost by blocking novel actions at the beginning of
a simulation.

• Multi-agent systems seem like an attractive candidate
for constructing the inner world. Each entity could have
it’s own controller which can be learned separately by
observing and trying to replicate the behavior of its real
counterpart.

• Mental simulation by itself is not enough; it must be inte-
grated with perception, learning, and planning. Perception
should translate sensor information into the internal rep-
resentation of choice, machine learning should be used to
internally replicate and predict the representations of exter-
nal targets, and finally, the agent should be able to include
planning techniques within its predictions.

• The models used to evolve the inner world of the agent
should be stable in relation to observed reality. In other
words, the output of a model, when given unseen data,
should not stray far from perceived reality, as this will
propagate errors through the mental simulation rendering
it invalid. Small errors are unavoidable, but they should
be limited by using statistical or memory-like learning
algorithms rather than pure regression.

• Goals should be expressed as an environment configura-
tion, using the agent’s internal representation. First, this
would be coherent with the unique internal knowledge rep-
resentation and, second, favorable configurations could be
learned by the agent, possibly leading to a generalized goal
system approach.

To conclude, there are still efforts needed to obtain a
self-sufficient set of mechanisms that enable an agent to be
fully autonomous and adaptive in arbitrary environments.
Meanwhile, extensive research has been done in planning,
machine learning, computer vision, and robotics, which led
to robust algorithms that provide satisfactory solutions to say
the least, to many individual problems. In this review, we pre-
sented our study of a relatively recent approach to artificial

cognition – computational mental simulation – and deter-
mined that it is indeed applicable to a wide range of scenarios.
Our own work on the subject also showed that a generic men-
tal simulation agent architecture is feasible and can integrate
a series of currently existing algorithms in a novel way that
may lead to more adaptive virtual and robotic agents.
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