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Fuzzy cognitive maps for the simulation
of individual adaptive behaviors

By C. Buche’, P. Chevaillier, A. Nédélec, M. Parenthoén and . Tisseau

This paper focuses on the simulation of behavior for autonomous entities in virtual
environments. The behavior of these entities must determine their responses not only to
external stimuli, but also with regard to internal states. We propose to describe such
behavior using fuzzy cognitive maps (FCMs), whereby these internal states might be
explicitly represented. This paper presents the use of FCMs as a tool to specify and control

the behavior of individual agents. First, we describe how FCMs can be used to model
behavior. We then present a learning algorithm allowing the adaptation of FCMs through

observation. Copyright © 2010 John Wiley & Sons, Ltd.
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Introduction

To date, the majority of work on virtual reality has been
related to the multi-sensory immersion of human users
within virtual worlds. These increasingly realistic uni-
verses will continue to lack credibility as long as they are
not populated with autonomous entities, i.e., having the
ability to perceive and act in the environment according
to their decision-making capacities. This overall auton-
omy is based on three forms: (1) sensorimotor autonomy;,
where each entity is equipped with sensors and effectors
enabling it to be informed about and act upon its envi-
ronment, (2) autonomy of execution, where the execution
controller of each entity is independent from the con-
trollers of other entities, and (3) autonomy of decision,
where each entity makes decisions in accordance with
its own experience of the environment (past experience,
intentions, emotional state, perceptions, etc.).

For simulation purposes, decision-making by au-
tonomous entities is defined according not only to exter-
nal stimuli, but also to internal states. In this paper, we
show that such behaviors can be described using fuzzy
cognitive maps (FCMs) in which these internal states will
be explicitly represented. The strengths of FCMs lie in the
fact that they can be used to graphically represent spe-
cific behavior in the form of a semantic graph and that
their evaluation at run-time is fast enough to meet the re-
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quirements of real-time simulations, as do connectionist
architectures.

FCMs are the outcome of research by psychologists. In
1948, Tolman introduced the key concept of “cognitive
maps” to describe complex topological memorizing be-
havior in rats.! In the seventies, Axelrod described “cog-
nitive maps” as directed, inter-connected, bilevel-valued
graphs, and used them in decision theory applied to the
political-economics field.> In 1986, Kosko extended the
graphs of Axelrod to the fuzzy mode which thus be-
came FCM.? In 1994, Dickerson and Kosko proposed the
use of FCMs to obtain overall virtual world modeling.*
Recently, FCMs have been successfully used to describe
and model complex dynamic systems,’® both for medical
diagnosis® and in decision-making.”

In all these studies, FCMs have been used to control
a global system. Here, we propose to decentralize FCMs
onto each agent, in order to model the agents” decisions
within a virtual world. This paper proposes the use of
FCMs as a tool to model the reactive and adaptive be-
havior of agents improvising in free interaction.

The paper is organized as follows. First, we high-
light the fact that FCMs are particularly well adapted to
specifying and controlling agents” decisions. We present
the uses of FCMs in reactive behavior, illustrating these
uses with a real-life example involving different types of
agent: a shepherd, dogs, and a herd of sheep. Second, we
describe the ability provided for agents to adapt their rep-
resentation of other actors’ behavior using FCMs, which
leads to their predictions becoming more significant. This
means that we give an agent the ability to learn through
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imitation. The agent is then able to modify its own be-
havior to mimic an observed behavior by either another
actor or an avatar controlled by a human operator. By
observing the imitated model, the agent must adapt its
representation of the model behavior. The mechanism
used to control the imitating behavior model is indepen-
dent of learning. Thus, imitated models can be driven
by any decision-making mechanism. We apply this algo-
rithm to the example given above (a sheepdog herding
sheep). The learning mechanism allows the dog to adapt
an FCM prey prototype to a given sheep in real time.

Reactive Behavior with
Fuzzy Cognitive Maps

FCM Presentation

FCMs are influence graphs (see Figure 1). Nodes are
named by concepts forming the set of concepts C =
{C1,...,C,}. Edges (C;, C;) are oriented and represent
the causal links between concepts (how concept C;
causes concept C;). Edges are elements of the set A =
{(Ci, C))ij} C C x C. The edges” weights are associated
with a link value matrix: L;; € M, (R).If (C;, C;) ¢ Athen
L; =0, else the excitation link (and inhibition link re-
spectively) from concept C; to concept C; gives L;; > 0
(Lij < O respectively).

FCM concept activations take their value from an ac-
tivation degree set V = {0,1} or {—1,0, 1}, or an inter-
val. At moment ¢ € N, each concept C; is associated with
two types of activations: an internal activation degree
a;(f) € V and an external forced activation value f,, () €
R. a(0) = 0, where 0 is the R” null vector.

FCMs are dynamic systems. The dynamic obeys a re-
curring relationship involving link matrix products with
internal activation vectors, and fuzzy logical operators
between this result and external forced activation vec-
tors.

Formalization of the FCM Dynamic

Until the end of this paper, § indicates one of the numbers
0 or 1, and V one of the sets {0, 1}, {—1,0, 1}, or [-4, 1].
Givenn e R*, tp e N, p e R} ,and ay € R.

An FCM Fis a sextuplet < C, A, L, A, f,, R > where:

1. C={Cy, -, C,} is the set of n concepts forming the
nodes of a graph.

2. A C C x Cis the set of edges (C;, C;) directed from C;
to C,

Figure 1. An FCM as an influence graph. The FCM seen
opposite is made up of four concepts and has seven edges.
At a moment t, each concept C; has a degree of activation
a;(?). The activation a(t) € V* and the links L € M4(R) are:

ay (1) 0 +2-1-1
t 0 -10 +1
a(t) = () L= . One zero in the
az(1) -10 0 O
ay(r) 0 0+10

links matrix L;; = Oindicates the absence of edges from concept
C; to concept C;, and a diagonal element L;; # 0 corresponds
to an edge from concept C; to itself.

CxC — R
(G, C) e Ly

a weight L;; to a pair of concepts (C;, C;), with L;; =0
if (C;, C)) ¢ A, or with L;; equal to the weight of the
edge directed from C; to C; if (C;, C;) € A. L(C x C) =
(Ljj) € R™"isamatrix of M, (R).Itis the link matrix of
the map Fthat, to simplify, we note L unless indicated

isa function C x Cto R associating

otherwise.
c - W .
4. A: is a function that maps each concept C;
Cl' = a;

to the sequence of its activation degrees such as for
t € N, a;(t) € Vis its activation degree at the moment
t.Wenote a(t) = [(ai(*))icp1..7]T the vector of activations
at the moment .

5. f. € (R")Nisasequence of vectors of forced activations
such as for i € [1, n]l and ¢ > 1y, f, () is the forced ac-
tivation of concept C; at the moment .

6. (R)is arecurring relationship on ¢t > #, between a;(r +
1), a;(t)and f,,(t) fori € [1, n]lindicating the dynamics
of the map F.

(R) :Vi € [1,n], Vt > 1o,

ai(to) = 0 )
at+1l)=o0o [gi (fa,-(t)v Zje[[l_,,]] Ljiaj(f))]

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 573-587
DOI: 10.1002 / cav



computer animation
& virtual worlds

SIMULATION OF INDIVIDUAL ADAPTIVE BEHAVIORS

@ Fuzzy mode (bl) ) Bimodal . Trimodal
p T+ ] ' ]

woa : 0
: :_ : qo’of"s J : :A Q1 0,51 ’

Figure 2. Cognitive maps’ standardizing functions.

where g; : R> - Risan operator combining two vari-
ables, for example:

gi(x, y) = min(x, y), or max(x, y), or a;x + By, ...

and where o : R — Vs a function from R to the set
of activation degrees V normalizing the activations as
follows (see Figure 2):

(a) If continuous mode (called fuzzy mode), V=
[=6,1], o is the sigmoid function o 4 : a =
% — &8 centered in (ag, %), with a slope
p - £ in gy and with limits at +00 respectively 1
and —§. The larger p is, the less linear the trans-
formation will be. In practice, § € {0, 1}: 0 stands
for a bivalued discrete logic or a fuzzy logic with
values in [0, 1], while 1 corresponds to trival-
ued discrete logic or a fuzzy logic with values
in[-1,1].

(b) If bimodal mode,

0if 0‘(0,0'5,1))((1) <05

1 lf 0(0,0‘5”1,)((1) > 05 '
(c) If ternary mode, V={-1,0,1}, o:a+r
—1 if a(lvg,,,)(a) < -05

0 if —0.5 < O'(]y(]‘p)(a) < 0.5 .
1 lf 0’(1,01/,)((1) > 05

V={0,1}, o:a~

The asymptotic behavior (t — 4o00) of FCMs with con-
stant externally forced activation vector sequence may be
a fixed point, a limit cycle, or even a strange attractor if
it is sufficiently complex.?

FCM for which Behavior?

It is difficult to describe the entire behavior of a com-
plex system with a precise mathematical model.® It is
therefore more useful to represent it graphically, showing
the causal relationships between the concepts involved.
Therefore, FCM can avoid many of the knowledge-

extraction problems which are usually present in rule-
based systems.’

FCMs are capable of forward chaining only, i.e., they
can answer the question “What would happen if...?”, but
not “Why...?”, due to the nonlinear nature of FCM dy-
namics. FCMs help predict the system’s evolution (be-
havioral simulation) and can be equipped with Heb-
bian learning capabilities, as proposed by Dickerson and
Kosko.* The fundamental difference between an FCM
and a neural network (NN) is that, in FCM, all nodes
have strong semantics defined by the concept’s model,
whereas internal nodes in NN graphs have weak se-
mantics which are only defined by mathematical rela-
tionships. As regards the learning capacity, during the
training phase, activation vectors must be given for all
concepts of FCMs, whereas for NNs, activation vectors
are only required for the peripheral neurons.

Constructing FCM

FCMs use symbolic representations which are able to
incorporate experts’ knowledge.!®? Human experts
have drawn up FCMs for planning or making deci-
sions in the field of international relations and political
developments,'® to model intruder detection systems!*
and demonstrate the impact of drug addiction®.

First of all, the experts determine the concepts that best
describe the system. They know which factors are crucial
for modeling the system (characteristic, state, variable,
etc.) and provide a concept for each one. Next, they iden-
tify those elements of the system which influence other
elements and, for the corresponding concepts, determine
the positive or negative effect of one concept on the oth-
ers. Finally, not all causes affect a factor with the same
intensity. Some of them have a greater, and others a lesser
effect. The experts must assign effect intensities. In order
to simplify matters, they might separate the relationships
between factors into groups, for example high intensity
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(Li; = 6), moderate intensity (L;; = 3), and low intensity
(Ly =1).

Within the framework of studies to design an autopilot
for racing yachts, we proposed to model the cognitive
activity of action selection using FCMs.!¢ In such FCMs,
concepts are action strategies or affordances. Originally
introduced by Gibson in ecological psychology, an affor-
dance is defined as an “action possibility” latent in the
environment, objectively measurable and independent
of the individual’s ability to recognize it, but always in re-
lation to the actor.'” In collaboration with an ergonomist,
an expert lists a set of required affordances related to the
activity, which is to be modeled. The affordance approach
needs a model which explain how an individual selects
one affordance out of a few; this where we use FCMs.
Rather than considering activation levels or the internal
inhibition of action graphs based on releases,'® we again
worked from the notions of attractors and repulsors
in external environments, as suggested by research on
affordance selection.!*?! From this point of view, an affor-
dance is not necessary an actual invariant of the environ-
ment, butitis a hypothesis made by the agentbased on its
immediate environment, which is associated with an ac-
tion strategy. One part of the expert’s knowledge is trans-
lated into inhibition/excitation relations between affor-
dances: for instance, obstacles could inhibit pathways,
gateways and landmarks, while gateways inhibit each
other. This gives the link matrix (L;;). The other part of the
expert’s knowledge concerns the affordance perception
value. As proposed in experimental psychology,® for
each affordance concept the expert proposes a formula
for this perception value, which we use as the external
activation f,, of the affordance concept. The FCM
dynamics occur and activations g; converge towards its
attractor. The selected affordance i is the greatest a;(r)
while a(r) follows the path of the attractor (most often
a fixed point or a limit cycle). Such a virtual agent acts
according to the expert description and then increases its
credibility.?

We have also used FCM to model emotional states.
In collaboration with psychologists, we have described
fuzzy emotional map (FEM) model, first presented in
Reference [24]. Each emotion is modeled as an FCM. In
this model we defined sensitive concepts (emotion input
and state of mind), one output concept to determine an
emotional intensity and four internal concepts to repre-
sent perception, feeling, sensitivity, and the construction
of emotional output. The only features that require modi-
fication between different types of FEM are the influence
weights between concepts of the map. Each weight is
defined by a particular personality trait (e.g., anxiety or

relaxation), and is used according to a specific kind of
emotion.

FCM for Modeling Reactive Agents’
Decision-making

Principle

FCMs can specify and control the behavior of au-
tonomous entities (agents). Agents have sensors and ef-
fectors, and make independent decisions with respect
to their behavior. FCMs working in relation with these
agents have perceptive, motor, and internal concepts. The
agents’ decision-making is replaced by FCM dynamics in
this way:

® agents’ sensors define FCM perceptive concept activa-
tions through fuzzification®

o defuzzificationt of FCM motor concept activations
provides agents’ effectors.

Fuzzification and defuzzification are obtained using the
principles of fuzzy logics, 2 where a specific concept is
represented by a fuzzy subset, and its degree of activation
represents the degree to which it belongs to this subset?”
(calculated using the membership function of the fuzzy
set).

As an example, we aim to model an agent capable of
perceiving its distance from an enemy. The agent will de-
cide whether or not to escape from the situation, depend-
ing on this perceived distance. The closer the enemy is to
the agent, the more frightened it will be, and vice-versa.
The more frightened the agent, the more quickly it will
try to flee. We model this escape behavior using the FCM
in Figure 3a. This FCM has four concepts and three links:
“enemy close,” “enemy far,” “fear,” and “escape,” with
stimulating links (41) from “enemy close” to “fear” and
from “fear” to “escape”, and an inhibiting link (—1) from
“enemy far” to “fear”. We chose fuzzy mode (V = [0, 1],
8§=0, p =5, ay =0.5), not forced (f, = 0). The sensitive
concepts “enemy close” and “enemy far” are activated
by the fuzzication of the sensor for the distance to the
enemy (Figure 3c) while the defuzzification of “escape”
gives this agent an escape speed (Figure 3d).

Sensation must be distinguished from perception, in
that sensation results from the sensors alone, whereas

"Fuzzification consists in converting external FCM values to
FCM concept activations. fuzzification is a function from R" to
V.

*Defuzzification consists in converting FCM concept activation
to FCM external values. Defuzzification is a function from V to
R".

Copyright © 2010John Wiley & Sons, Ltd.
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Figure 3. FCM for an agent’s escape behavior. The sensitive concepts surrounded by dashes are activated by the fuzzification of

sensors. The motor concepts in thick black lines activate the effector by defuzzification. (a) The concept C; ="enemy close” excites

Cs ="fear” whereas C, ="enemy far” inhibits it and “fear” excites C4 ="escape”. A purely sensitive FCM is hereby defined. (b)

The FCM is perceptive: “fear” can be self-maintained (memory) and even influence feelings (perception). (c) The fuzzification of

the distance to an enemy gives two sensitive concepts: “enemy close” and “enemy far.” (d) The defuzzification of “escape” governs
the speed of escape in a linear manner.

perception is the sensation influenced by an internal
state. FCMs make it possible to model perception, thanks
to the links between central concepts and sensitive con-
cepts. For example, let us add three links to the previ-
ous escape FCM (Figure 3b). An initial self-stimulation
of “fear” (link from “fear” to "fear" with (y > 0)) simu-
lates the effect of “stress”: the more afraid the agent is,

(a) pure stimuli
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%
Co

Ton

fear

the more afraid it will feel. A second stimulation (A > 0)
goes from “fear” to “enemy close” while a final inhibitor
(—X < 0) from “fear” to “enemy far” simulates the phe-
nomenon of being “fearful”, i.e., when the agent is afraid,
it tends to perceive its enemy as being closer than it ac-
tually is. The agent becomes perceptive according to its
degree of fearfulness A and stress y (see Figure 4).

(b) perception

T I |

ARV

ny 05 1.0

fear

Figure 4. Escape speed decided by Figure 3b FCM. The perception of the distance to an enemy can be influenced by fear: depending

on both the proximity of an enemy and fear, the dynamics of the FCM decide upon a speed obtained here with its 3rd cycle. (a)

A =y =0, the agent is purely sensitive and its perception of the distance to the enemy does not depend on fear. (b) . = y = 0.6,
the agent is perceptive: its perception of the distance to an enemy is modified by fear.
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Figure 5. Sheepdog and sheep playing roles given by their FCMs. (a) The shepherd is motionless. A circular zone represents the

area where the sheepdog must gather the herd. A guard point is located in the zone, diagonally opposite the shepherd. The sheepdog

must return to this point when all the sheep are inside the designated area. Initially, the behavior of a dog without FCM is to run

after the sheep which then quickly disperse outside of the herding area. (b) The elementary FCM carries out the actions of a dog
obeying the shepherd’s order to “stay,” by inhibiting the desire to run.

Application

This section illustrates the usage of FCMs in simulat-
ing the behavior of believable agents. In this example,
FCMs characterize believable agent roles in interactive
fictions through a story taking place in a mountain pas-
ture. “Once upon a time there was a shepherd, his dog and
his herd of sheep ...” This example has already been used
as a metaphor for complex collective behaviors within a
group of mobile robots (RoboShepherd®), as an example
of a watchdog robot for real geese (Sheepdog Robot?),
and as an example of improvisation scenes (Black
Sheep™).

The shepherd moves around in the pasture and can talk
to his dog and give it information. He wants to round up
his sheep in a given area. In this simulation, the shepherd
isanavatar for ahuman actor that makes all his decisions.
Thus, no FCM is attached to this actor. By default, he
remains seated.

Each sheep can distinguish an enemy (a dog or a hu-
man) from another sheep and from edible grass. It can
evaluate the distance and the relative direction (left or
right) from an agent in its field of vision. It is able to
identify the closest enemy. It can turn left or right and
run without exceeding a certain maximum speed. It has
an energy reserve that it regenerates by eating and ex-
hausts by running. By default, it moves in a straight line
and ends up wearing itself out. We want the sheep to
eat grass (random response), to be afraid of dogs and
humans when they are too close, and, in keeping with
their gregarious nature, to stay close to other sheep. So,
we chose a main FCM containing sensory concepts (en-
emy close, enemy far, high energy, low energy), motor

concepts (eat, socialize, flee, run), and internal concepts
(satisfaction, fear). This FCM calculates moving speed
through defuzzification of the concept “run,” and the di-
rection of movement by defuzzification of the three con-
cepts “eat,” “socialize,” and “flee.” Each activation cor-
responds to a weighting on the relative direction to be
followed: to go towards the grass, join another sheep, or
to flee from an enemy respectively.

The dog is able to identify humans, sheep, the specific
herding area within the pasture and the guard point.
It distinguishes its shepherd from other humans and
knows how to spot the sheep that is the farthest away
from the area among a group of sheep. It knows how to
turn to the left and to the right and run up to a maximum
speed. Its behavior consists in running after the sheep,
which quickly scatters them (see Figure 5a).

First, the shepherd wants the dog to obey the order
“stay”, which will lead the sheep to socialize. This is done
by giving the dog a sensory FCM of the shepherd’s mes-
sage, which inhibits the dog’s desire to run (see Figure
5b). The dog’s behavior is driven by the FCM and the
dog keeps still when asked to do so (message “stop”).
The dog has an FCM based on the concepts associated
with the herding area, for example whether a sheep is ei-
ther inside or outside the area. These concepts also make
it possible for the dog to bring a sheep back (Figure 6¢c—
e) and keep the herd in the area by staying at the guard
point, in other words, on the perimeter of the herding
area and opposite the shepherd.

It is remarkable to observe the virtual sheepdog’s path
in this simulation forms an S shape (Figure 6¢), whichis a
strategy that can be observed for real sheepdogs round-
ing up sheep.

Copyright © 2010John Wiley & Sons, Ltd.
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Figure 6. Sheepdog and sheep carrying out the roles given by their respective FCMSs. For this simulation, the sheep’s desire to
gather is inhibited. (c) The film of the sheepdog bringing back three sheep was paused. The FCMs for the sheep and for the dog
are represented in (d) and (e) respectively. (d) The dog’s main FCM represents the role of bringing a sheep back to the area and
maintaining a position in relation to the shepherd when all the sheep are in the desired zone. (e) The FCM decides the angle of
incidence towards the sheep to bring it back into the zone: to go towards the sheep, but to approach it from the opposite direction.

Adaptive Behavior with
Fuzzy Cognitive Maps

To obtain believable behavioral simulations, agents of the
same type must have slightly different behaviors, and
these individual behaviors must evolve over time. The
actual behavior of a given agent is the result of its adap-
tation to the situations it has encountered. As each agent
has its own past, evolution induces individual variability
amongst agents’ behaviors. When interacting with other
agents, one agent has to adapt its behavior according to
the way the behavior of its protagonists develops. For ex-
ample, in a prey—predator interaction, the co-evolution of

the two species has been observed in many cases and is
known as the “Red Queen Effect.”3!

Imitation from Prototypic Behavior

The idea is to provide the ability for the agent to adapt
its representation of other actors” behavior. This learn-
ing is done using the comparison between the simula-
tion model and the observation of reality.?® We propose
a learning based on imitation®>* of observed behaviors
to modify predefined prototypes.

Four main types of approach to learning by imitation
canbe distinguished: logical, connectionist, probabilistic,
and prototypical approaches.

Copyright © 2010John Wiley & Sons, Ltd.
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1. Logical approach: Learning consists in generating a set
of rules based on logic** and the sensorimotor ob-
servation describes the example (see XSTL logic).
This approach is difficult to adapt to our perceptual
modeling behavior based on FCM, requiring that the
weighting of the edges’ be linked with such sensori-
motor rules.

2. Connectionist approach: The actions are correlated with
sensation by an adaptive NN, possibly inhibited by
a mechanism of exception recognition (see: architec-
ture PerArc®); modeling a NN provides a statistically
satisfactory, but not semantically explicit, behavior in-
stead of FCMs.

3. Probabilistic approach: Many internal variables are
used, but since they do not model the emotions and
do not reflect our concept of perception, these internal
variables do not change the variables through sensory
feedback effects.

4. Prototypical approach: Learning from prototypes cre-
ates an animation by finding primitives generating
the imitated movement.*4° An FCM is an explanatory
model suited to behavior specification. Thus, an ex-
pert will be able to develop a library of prototypic be-
haviors. This library represents the agent’s behavioral
culture.®? For example an animal’s library is made up
of the prototypic behavior of both predator and prey.
Therefore, our agents have a library of prototypical be-
haviors, but unlike Mataric or Voyles, our primitives
are at the decision of the movements, not within the
movements themselves.

Principle

We consider that an agent has sensors allowing it to per-
ceive its environment, as well as the effectors it uses to
perform action. Any given agent also has a library of pro-
totypic behaviors specified by FCMs.

In parallel to the virtual world, an agent also has an
imaginary world, in which it can simulate its own be-
havior as well as the behavior of other actors. This imag-
inary world corresponds to an approximate representa-
tion of the environment from the agent’s point of view,
along with the representation of other actors” behavior.
Agents use prototypic behaviors in order to simulate
other actors” behavior. They imagine their own behav-
ior by simulating their own decisional mechanisms and
imagine the behavior of the other actors using prototypic
FCMs. They can use their imaginary worlds to choose
one strategy amongst several possibilities, not through
logical reasoning but rather by behavioral simulation.

Thus, they will be able to predict evolutions within the
environment.

Learning

In this section, we present a method for adapting pro-
totypic behavior through imitation in real-time. Agents
observe their environment (i.e., other agents), which al-
lows them to simulate the behavior of other entities in
their imaginary worlds with prototypic FCMs. The idea
is to provide a more relevant simulation by adapting
prototypic FCMs through imitation. The modification of
prototypic FCMs reduces the difference between predic-
tions in the imaginary worlds and reality.”® We assumed
that agents have sensors to deduce information relating
to prototypic FCMs. This means estimating sensor and
effector values that will fuzzify sensor values, and com-
paring the result of defuzzified motor concept activations
with the model’s effector values.

The learning mechanism consists in retrieving the sim-
ulation results in the imaginary world, comparing them
to what happened in the virtual world, and thereby
adapting the prototypic FCM. To be consistent with the
knowledge-based modeling of the behaviors, leading the
designer to explicit both concept and links of the FCM,
the learning solely consists in adapting the weights of
the causal links between concepts of the prototypic FCM.
Therefore, the learning algorithm does not modify either
the structure of the FCM’s influence graph, or the fuzzi-
fication of the sensors, or the defuzzification of the mo-
tor concepts. This modification in the causal connections
between concepts could be controlled by the expert. In
particular, the expert could verify the FCM’s structure,
impose signs for some links, and define some link inter-
val values. This is what we call “meta-knowledge about
learning.”

Why not Modify the FCM
Structure?

FCMs have the ability to visually representbehavioral ex-
pertise by means of a semantic graph. The concepts, the
causal links between them, and these links’ signs are as-
signed semantic descriptions. In this case, learning does
not alter the structure of the influence graphs, so that the
behavioral coherence as seen by a human observer may
be preserved.*'* Nor does it alter the fuzzification of
the sensors or the defuzzification of the motor concepts
which remain unique for each agent.
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Algorithm We make the assumption that these features are
available.

Kosko* proposed two different Hebbian learning 2. Simulating prototypic behavior: Sensors are fuzzified
methods.®® One is based on the correlations between into external perceptive concept activations. The
activations®® and the other on a correlation of their FCM'’s dynamics are calculated, and image-effectors
variations (differential Hebbian learning).* Differential are obtained, by activating inner motor-concept de-
learning modifies only the links associated with corre- fuzzification.
lated variations in the concepts’ activations, while non- 3. Calculating  reconsiderations: Image-effectors and
differential correlation learning runs the risk of inap- model-effectors are compared, generating a set of
propriately modifying all the links. Kosko's differential desired pseudo-activations. These pseudo-activations
learning is based on the knowledge of a limit cycle which are obtained by going back up along the graph from
takes all concepts into consideration, and which is pro- motor concepts towards perceptive concepts, without
vided by an expert. However, we cannot use such a limit modifying links and by using meta-knowledge about
cycle because only estimated model sensors and effectors learning.
can be observed, and the FCM which generated them 4. Updating causal links: FCM causal links are updated by
is unavailable. In addition, Kosko’s differential learning applying discrete differential Hebbian learning to the
makes the assumption that external activations are con- sequence corresponding to the transition from FCM
stant; however, the virtual world is a dynamic system activations to desired pseudo-activations.

and external activations evolve over time. It is therefore
necessary to adapt Kosko’s differential Hebbian learn-
ing to simulate realistic behaviors in a dynamic virtual
environment.

The adaptation algorithm that we propose is a four-
stage iterative cycle (see Figure 7):

In the following sections we shall examine these four
stages in more detail.

Observation

During the first stage, the agent measures features of the

1. Model estimation: The agent estimates model- actor-model which are required for model-sensor and
sensors and model-effectors through observation. model-effector estimations. For example, the agent “dog”
= —~_" " T Tactor—image ™ _
[ == -".EL_"\-\. : Prey prototype _ ~

=~ o VoY | | i

A
( | Hebbian differential

"':‘ o /|-— g 1 ——c:;-- 9 I J.
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Figure 7. The agent, the actor-model, and the actor-image. The “dog” agent and the “sheep” actor-model evolve within the

virtual world. The dog possesses is own imaginary world in which it can simulate prototypic behavior from a library of behaviors,

containing the “prey.” In its imaginary world, the dog tries to imitate the sheep by an actor-image using the prey prototype. The

imitation is conducted in real-time according to the events occurring in the virtual world, while comparing the observed effectors

of the sheep in the virtual world with the predicted effectors by the prey prototype in the imaginary simulated world (as estimated

by the sheep’s sensors). If necessary, discrete reconsideration takes place at the level of the prey’s internal activations in order to
reduce this difference. The prey prototype is then updated via differential Hebbian learning.
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estimates the distance between the sheep and a predator
by the difference in position at that instant ¢, and it es-
timates sheep’s speed by the difference in the sheep’s
positions at the instants  and r — 1.

Prediction

The second stage simply corresponds to the classic use
of FCMs for controlling a virtual actor and determines
image-actor FCM activations at r + ¢ ~ ¢ in the imagi-
nary world, according to model-sensor estimation and
FCM dynamics with N iterations:

a(t + £61) = S (G(f(¢), LT - a(t + F151))) )

fori=1,...,N; stk1 @
N equals the length of the longest acyclic path added to
the length of the longest cycle in the influence graph in
order to make sure that sensor information is spread to
all nodes. n is the FCM concept number, f = (f;)i1..] €X-
ternal activations coming from sensor fuzzification, a =
(@:)ig1,.7 internal activations, L = (Lij)(i, LA link matrix,
G : (R?)" — R" a comparison operator and S a standard-
ization function transforming each coordinate by the sig-
moid function: o(s q,,p)(x) = % — 8, with parame-
ters (8, p, ag) € {0, 1} x R} x R. FCM motor concept de-
fuzzification at ¢+ 8t ~ r provides image-effectors. To
clarify, we note a the resulting inner activations a(r + 6t)
in the following paragraphs.

Reconsideration

The third stage recursively generates sets of pseudo-
activations (P;);cp1,,) representing the orientation for
FCM dynamics. This is done by moving back up the
influence graph from motor concepts towards percep-
tive concepts, proposing pseudo-activation values ac-
cording to meta-knowledge about learning, and bringing
image-effectors closer to the estimates of model-effectors.
We did not use the gradient backpropagation method*
because FCMs are cyclical processes and their topol-
ogy is not organized in layers (recurrent links). Further-
more, the gradient backpropagation method does not
hold graph semantics and we wanted to be able to apply
specific meta-knowledge to specific nodes. We shall now
look more closely at the recursive process.

Initialization m = 0. Entering into the FCM from effec-
tors. A set Iy represents indices of concepts defuzzified
onto image-effectors. For each i € I, we apply learn-
ing meta-knowledge. Two potential pseudo-activations

pE=o(ay % %) simulate an active/inactive concept C;,
a; > 1 representing choice radicality. Including the «;
value, there are three possible pseudo-activations p; =
a;, pi or p; for each C;. The 3@ combinations are
defuzzified and compared to model-effector estimates.
The best combination ( p?’” )ier, is retained (the O deals
with defuzzification and the {} is a set of future labels).
Viely,, P,={ p?’“}. The other pseudo-activation sets
(P)ie1,n1\1) are empty. We propose this discrete recon-
sideration rather than a gradient-scaled calculation.*#
A discrete choice like this facilitates the agent’s decision-
making process.

Progression from m to m + 1. Let I,, C [1, n]] be the in-
dex set of concepts whose desired pseudo-activation
set is not empty. For i € I, note a; (respectively f;) in-
ternal (respectively external) activation of concept C;,
P = {pfl‘("'), e pf-"L‘{”‘)} its desired pseudo-activation set
whose cardinal equals L and J C [1, n] the index set of
concepts which are causes for the concept C; (i.e.:L; # 0)
and such that the edge from C; to C; has not been studied:
Vi € [1, L], j # k.. We will calculate pseudo-activations
P; for j € J as follows:

® For each j € J, we apply learning meta-knowledge:
two potential pseudo-activations, p;-r and p;, are cal-
culated using the formula (3) so that their influence on
a; causes a clear choice between an active C; or an in-
active C;. This accounts for external activations, with
a > 1 representing the choice radicality:

20
p_/i,': (aoﬂ:p]—fi—zlalial> /Lji 3)
I#]

Note that ap and p are FCM sigmoid function parame-
ters (see Figure 2); « is a learning algorithm parameter.

® Then we randomly select a A € [[1, L]. This gives
pit e P and we choose between the possible 3¢/
combinations p; = a;, p}, or p; for je J, the one
pif(“"k“ which gives a C; activation o (Gi(ﬁ, Zi Ljipi.))
the nearest to p/*''"/.

® Thus we obtain a new set of concept indices with a
pseudo-activation set which is not empty: 7,41 = 1,, U
Jwith P; = P; U {p}""")for j e J.

Termination. If for each i € I,,, the corresponding J set
is empty, that means every edge belonging to the paths
arriving in (C;);e;, has been studied.

We use a discrete method by proposing three pseudo-
activations. The discrete method chosen will allow us on
one hand to limit the calculations and on the other, to
represent a radical choice. Our argument is that to learn,
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the proposed modifications need to correspond to radical
choices rather than minor alterations.

Update

The fourth and final stage modifies the matrix of the
FCM'’s links in such a way that its dynamics are directed
towards resulting behavior similar to that of the actor-
model. We use discrete Hebbian learning to pass from
internal activations a to questionings p calculated during
the previous stage. Unlike Kosko who used a limit cycle
and a learning rate decreasing towards zero over time
to ensure convergence (see Reference?: p. 186), we only
make them learn the passing from internal activations a
to reconsideration p in order to modify the links without
creating cycles while maintaining a constantlearning rate
r(t) = R. A cycle would teach not only the passing from
a to p, but also from p to a, which is inappropriate. Our
learning rate is constant so that the agent will conserve its
adaptive nature. Theoretically, there is nothing to prevent
the learning rate from being modified over time. This can
be achieved by making it follow a series decreasing to-
wards zero, with an infinitely decreasing associated se-
ries, as, for example, r(t > 1y) = % This would ensure
that the weights of the FCM’s edges would converge, but
adaptability would decrease over time.

Formally, noting A C [[1, n]* the edge set of the FCM,
B €]0;1 + §[ a sensitivity level and s : R — {—1, 0, 1} the
discrete function s(x) = —1, Oor 1ifx < —8, —B<x <
B or x > B respectively, the learning algorithm corre-
sponds to the following equations:

V(i j) € A, if 3 € [0.n]., pit " e Py,
with this k :
A= S(P,j'(-") —a;), Aj= s(p];.’("""““} —aj)

ij0 + R(A;A; — Lijo), if A;#0
L;:¢+1y= .
i ij0) ,if A =0

otherwise A;; & {path to effectors} : L1 = Ljjo

It must be noted that we preserve coherence in the mod-
ification of links as specified in the initial prototype
provided by the expert. Link emergence, link suppres-
sion, or modification of a link’s sign are therefore for-
bidden. Furthermore, some links can be maintained in
terminals B;; = [L]}™, L™ ] so that the modified behav-
ior might remain consistent with the expert’s initial de-
scription: if L;;(r + 1) < L™ then L;;(r 4+ 1) = L™ and if
Lij(t +1) > L™ then Ly(r + 1) = L™

Complexity

The complexity of this algorithm is a polynomial func-
tion of the number n of FCM concepts, and even O(n). For
an expert, a concept’s causes are always very limited in
number (seldom more than seven). Therefore, the num-
ber of edges arriving on each concept is increased by M
(M ~ 7). CardJ < M.3“% js thus increased in practice,
whatever the number of concepts involved in the FCM.
The same applies to the calculation of FCM dynamics
with a complexity of O(n) whereas they could seem to be
O(n?), due to the great number of zeros in the link ma-
trix. The number of not null links in a column is no more
than M, whatever n might be. This algorithm can thus be
implemented for use in real-time.

Application

Based on the sheepdog environment described above,
we implemented three applications. First, the dog learns
one way of rounding up sheep by imitating a human
operator or another dog. In these cases, the prototypic
FCM used is the dog’s own FCM. Second, the dog’s prey
prototype adapts to a given sheep in real time. This ap-
plication is described in this section. Third, fearful sheep
learn how to be surrounded by other sheep. The sheep
remain frightened but no longer flee when they come
upon a dog. Immobilizing fearful links means that the
sheep’s behavior can be adapted whilst at the same time
preserving a fearful “personality.”

To simulate sheep behavior, the dog uses prototypic
FCMs of prey from its behavioral library. The dog actu-
ally represents each sheep’s behavior through prototypic
“prey” FCMs in its imaginary world, with each sheep
being associated with its own prototype. The dog can
therefore simulate the sheep’s behavior in order to make
predictions and to test different strategies.

The prototypes will adapt to each sheep through imi-
tation. One FCM controls the prototype’s speed and an-
other controls its direction. Comparisons between the re-
sult of the imaginary and the virtual worlds are used
to adapt prototypic FCMs in real-time through learning.
Figure 8 illustrates the modification through imitation of
aprototype’s speed and the representation of one sheep’s
speed using the imaginary world. We chose this set of
learning periods to ensure that the process would con-
verge.

In order to imitate, the dog first observes the sheep. It
adapts the prototypic prey behavior allowing it to simu-
late the sheep’s behavior in its imaginary world. By ob-
serving the sheep, it estimates the information necessary
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Figure 8. An FCM of perceptive prey from the library of prototypic FCMs which adapt themselves by learning.
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Figure 9. More pertinent predictions can be obtained from the imaginary world by using imitation learning.

for the fuzzification of the prototype (Phase 1: observa-
tion). Estimated sensor values are fuzzified in activating
the concepts “Enemy close” and “Enemy far.” The proto-
type dynamic occurs and, by defuzzifying the activation
of the motor effector “Escape envy”, we obtain the im-
age effector (Phase 2: prediction). This corresponds to the
dog’s representation of the prey’s speed. The image ef-
fector from the prototype is compared to an estimation of
the sheep’s effectors and this comparison is used to cal-
culate a set of pseudo-activations associating the desired
modifications to the FCM’s links (Phase 3: reconsidera-
tion).

In Figure 9, we compared the simulation of the sheep’s
behavior obtained from the prototype in the imaginary
world (“Prey image”), with the sheep’s behavior in the
virtual world (“Sheep Model”), both before and after
learning, while the dog performs the same trajectory
(“Dog”). The modeled sheep is controlled by the map
in Figure 3b (with A = 0.5 and y = 0.6).

The human operator decides on the training period
from start to finish. The dog’s acquired imitation experi-
ence illustrated in Figure 9 represents around 100 cycles,
during which the dog approaches and moves away from
the sheep twice. If learning were to become permanent,
parameter A in the “prey” prototype would be reduced to

as little as 0.3 when the sheep remains at a distance from
the dog (over 1000 cycles) but which quickly (below 10
cycles) goes back to a value of around 0.7 as soon as the
dog begins to move towards the sheep. This proves the
need for a constant learning rate: adaptability remains
extremely responsive no matter what the duration of the
learning.

We then went on to generate a herd of 30 sheep
with different "personalities” (differences A and y in the
sheep’s FCM). We assigned the dog a “prey” prototype
for each sheep and requested the same number of par-
allel learning processes as there were sheep in the herd.
We obtained significant predictions, with each prey pro-
totype adapting quickly to each sheep (relative stabil-
ity of the coefficient after 1500 cycles; the time required
for the dog to approach each sheep at least once). How-
ever, a simultaneous learning technique would not be
possible for larger herds, as when there are more than
300 sheep, the dog no longer has the time to learn in
real-time.’

$Our models were implemented using oRis* language, and
were made on a basic linux PC with a 400 MHz CPU and 128 MB
of RAM.
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Conclusion

In order to be believable, autonomous behaviors must be
driven, not only according to external stimuli, but also
according to internal emotions such as fear, satisfaction,
love, or hate. We described these behaviors using FCMs
where these internal states are explicitly represented. In-
stead of the conventional use,* we embedded FCMs into
each agent. This defines the decision-making period of
their lifecycle. The agents implemented with FCMs are
not only sensitive, but also perceptive; their behavior de-
pends on their internals states retroacting on the sensors.

We described the use of FCMs as a tool for modeling
the behavior of virtual actors improvising in free interac-
tion. We highlight specific modeling features which can
prove particularly advantageous, such as the flexibility
concerning system design and control, the comprehen-
sive structure and operation, adaptability to problem-
specific prerequisites, and the capability for abstractive
representation and fuzzy reasoning.

Our agents possess a behavioral library made up of
prototypic FCMs. While acting in the virtual world, the
prototypic FCMs allow the agent to simulate the behav-
ior of other actors in its imaginary world. These FCMs
simulate different strategies, allowing the agent to make
predictions. We use FCMs to predict behavior, not by
formal reasoning as it was realized for the reasoning
on beliefs, the distributed decision and the organiza-
tion of agents in interaction from the global standpoint,*
conceptual graphs for human experts, but by behavioral
simulation.

We presented a learning algorithm allowing the proto-
typic FCM to adapt through observation. Our algorithm
changes the weights of FCM connections. It does not,
however, modify the structure, the fuzzification of the
sensors, or the defuzzification of the motor concepts. The
applications depict a sheepdog using a prototypic FCM
to predict the behavior of a herd of sheep.

The following points are the major limits of our pro-
posal. Currently, the prototype choice (for internal simula-
tions and for learning) is provided by the designer of the
simulation. Moreover the learning periods are not chosen
by the agent, they are imposed by the designer.

Transferring these competencies to the level of agents
will increase their autonomy, while automating the en-
tire process. Consequently, future research will aim to
implement a process that selects a prototype in the li-
brary through observation of the model behavior to be
imitated. Furthermore, the learning period will be se-
lected automatically. We are also working on adapting

the fuzzy transformations associated with fuzzification
and defuzzification.
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