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ABSTRACT

This paper deals with simulations of real-time interactive character behavior. The underlying idea is to take into account

principles from cognitive science, in particular, the human ability to anticipate and simulate the world behavior. For that

purpose, we propose a conceptual framework where the entity possesses an autonomous world of simulation within

simulation, in which it can simulate itself (with its own model of behavior) and the environment (with an abstract

representation, which can be learnt, of the other entities behaviors). This principle is illustrated by the development of an

artificial juggler, which predicts the motion of balls in the air and uses its predictions to coordinate its own behavior while

juggling. Thanks to this model it is possible to add a human user to launch balls that the virtual juggler can catch whilst

juggling. Copyright # 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study is focused on the real-time interaction between

a virtual character, or agent, and a dynamic open world.

In this world, real users are able to disturb, at any time,

the behavior of the virtual character. In this case, using a

precise representation of the behavior of the world

is impossible. However, it is a very important challenge

to develop such a kind of behavior in order to address

complex sensorimotor interactions with humans for video

games, virtual theater, sport or any application implying

improvisation, adaptation or co-evolution between human

and virtual creatures. Despite the availability of numerous

propositions for interactive behavior in computer anima-

tion (see Section 2), our goal is to use ideas and concepts

from cognitive science to enhance credibility about

interactions. To be more precise, focus is on the simulation

theory, the human’s anticipation ability and capacity to

learn the world with which it is interacting. The result is

that interactive characters can improve, in real-time, their

behavior adaptation ability. This paper is organized

as follows: an overview on interactive animation of virtual

characters, and on main challenges in this field, is

presented in Section 2. It points out that, usually, the

dynamics of the environment is pre-given and steady.

Section 3 gives three concepts from cognitive sciences

considered as important in human ability during inter-

actions within an uncertain and variable environment.

These concepts are anticipation, simulation, and attention.

Then, Section 4 proposes a conceptual framework based on

three parts: (i) general knowledge about the environment

which can be learnt during interactions; (ii) simulation

world, which allows the anticipation of the current

interaction and the definition of the object of attention

of the character; and (iii) control of the virtual agent in

interaction with its own world, but based on the prediction

issued from the simulation. An illustration of this model

is provided in Section 5 through implementation of an

interactive juggling game. It shows the ability of the virtual

juggler to adapt its reaction to various disturbances, to play

with other virtual jugglers and also with a human player.

2. INTERACTIVE CHARACTERS

Numerous investigations have been aimed at simulating

the behavior of virtual characters in real-time. Several

approaches dealt with the development of algorithms
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dedicated to the synthesis of the gesture quality [1,2].

But, none of them took into account interaction abilities

of the character. At the opposite, some models developed

in robotics are interaction oriented and rely on cognitive

science, but the problem of animation realism is not

addressed [3]. In-between hybrids architectures can

describe high level real-time reasoning, thanks to state

machines, planning algorithms, and synchronization

mechanisms [4,5]. Some other ones are rule-based [6],

but, generally, the management of interactions introduces a

bottleneck in term of the capabilities to take into account

all possible scenarios. In the domain of animated and

conversational agent, interaction is more generally

addressed. For instance, JACK is an architecture able to

manage the dialog between two agents [7], REA [8] allows

the inclusion of the user’s gaze and provides algorithms to

link voice to gestures. GRETA [9] communicates with

complex emotions and MAX [10] recognizes the hand

gestures thanks to the treatment of data issued from a

motion capture glove. Ref. [11] identifies some subtle

interactively contingent phenomena during human inter-

action which lead to a social resonance. For instance, Ref.
[12] presents a system for authoring interactive characters.

ELCKERLYC [13] is an adaptation of SAIBA which is

able to anticipate the behavior of a user to change the

animation from a set of precomputed possibilities. Because

it relies on anticipation, it is close to our work but limited

by the use a predefined animations. Finally, close to our

applicative example, Ref. [14] proposes an architecture for

the hand coordination of a virtual juggler. However, as

these authors focused on important technical issues, some

essential features of human interaction, addressed in

cognitive science, were neither considered, nor made

explicit by these numerous approaches. These features

would be able, in the long run, to enhance credibility of the

dynamics of interactive behaviors. In first step, they can

improve the adaptability of a virtual character to different

types of disturbances issued from a poorly known world

because of its variability and its opening on humans.

3. THREE NOTIONS FROM
COGNITIVE SCIENCES

Cognitive science is a wide domain, enriched by many

points of view. Here, focus is only on the three key

concepts addressed in this study.

3.1. Anticipation

Animals and humans use their memories of the past so as

to anticipate the consequences of their actions and

the behavior of those around them. Some philosophers

put the anticipation at the basis of cognition [15,16].

The phenomena of anticipation are held parallel to

the reasoning and they allow active correction of the

action [17].

3.2. Simulation

This concept is close to anticipation, but it explains

how anticipation is performed. Some psychologists and

neuroscientists claim that the brain is a simulator for action

in the environment [17–20]. With simulation theories,

anticipation is not a disembodied abstract and rational

reasoning, but rather an active process based on the

imagination of interaction with an imaginary world: it is an

explicit internal simulation.

3.3. Attention

Sensory anticipation includes the use of predictive

environmental models to orient the entities’ perceptions

more effectively, especially in order to process expected

event rather than to take into account the whole

environment [18,21].

4. CONCEPTUAL FRAMEWORK

Our models are part of a conceptual framework described

in Figure 1. It takes into account notions like anticipation

and explicit internal simulation. To take a decision and to

control its interaction into a virtual world (at the bottom of

the Figure 1), an autonomous agent uses predictions

provided by a simulation (the imaginary world in the

middle of Figure 1), performed from approximate knowl-

edge, i.e., this simulation is not the result of an analytic

calculus from accurate physical features of the environ-

ment. These features are approximated in an abstract world
(at the top of the Figure 1) and hence, some variations in the

future of the virtual world are possible. Hence, the agent

needs to perpetually correct its control through comparison

of approximated anticipations against real perceptions

(when they exist). The result is a possibility of error of

estimation and then of failure during an interaction.

Moreover, these failures are not arbitrary because they

realize a natural feature: an approximation during anticip-

ation. For instance, the more surprising a disturbance is, the

less efficient the behavior is. In addition, Section 5 shows

that these approximations can be used to perform active

Figure 1. Conceptual framework for anticipative agents.
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perception by the virtual juggler, and thus reflect the

concept of attention (see Section 3).

Finally, the abstract world is a sum of approximative

knowledge about the dynamical features of the world.

These knowledge are learnt during interactions. Thus,

the agent can adapt its worldview through experience. For

that, different techniques from machine learning can be

used (reinforcement, lazy learning, etc). This idea was

used to define the behavior of virtual sheepdogs able to

anticipate and to learn the decision making of virtual sheep

by the use of fuzzy cognitive maps [22]. Now, wewill show

that the conceptual framework presented here can be

applied in a sensorimotor interaction context with humans.

5. EXAMPLE: INTERACTIVE
JUGGLER

The problem of virtual juggler was discussed in Refs.

[14,23]. But, in these approaches, neither the modeling of

approximative anticipation nor the theory of simulation

was taken into account. More generally, the relationships

between cognitive sciences and character’s behavior were

not addressed. Here, we will show that the proposed

conceptual framework can account for not only adaptation,

but also plausible errors, through more or less predictable

interactions, especially, with a real human character. An

illustration of its application is presented in Figure 2. This

application is called Jabu: Juggler with Anticipatory

Behavior in virtual Universe (see Figure 3).

The virtual world of the juggler has physical properties

(inertia, gravity, wind, etc.) through the use of the ODE1

(Open Dynamic Engine, http://www.ode.org/) physics

engine. Of course, these quantities are not explicit in the

model of control. This control is adjusted through an

attentional process focused on the next (anticipated) ball
(actually one ball by hand). The approximate position of

the balls is made by their simulation in the imaginary world

of juggling. The function approximation properties of

this imaginary world come from different neural networks

(NNs). The abstract world corresponds to the weights of

the arcs of these networks. Since they are universal

approximators, we will see later that they allow real-time

adaptation of the juggler gestures to different types of

disturbances (this is also illustrated by the video associated

with this article). The implementation of these principles is

described hereafter.

5.1. Decision-Making Process

The hands have independent functions: this means that

there are neither complex juggling moves nor tricks, but

simply a succession of ball catches and throws, where each

movement is independent of the others. As soon as a ball

comes at the same height as the hands, it must be caught

and thrown back. Hence, at this stage, the goal is not to get

a realistic dynamics of gesture; no complex arm control

model is used. Nevertheless, the time taken for a hand to

move is not negligible and makes the juggler at risk of

delayed move, which means missing the ball; this is also

amplified by prediction errors. As mentioned above, the

precise reproduction of the movement is not our priority

and the hand’s movement time is an empirically

adjustable variable which reflects the delay between the

decision beingmade and the action being carried out. In the

following section, to facilitate the readability while

keeping things brief, any reference to some hand activity

means that the theoretical model was implemented for the

anticipatory decision-making applied to our juggler.

The different phases of juggling are as follows.

The juggler begins by looking for a ball in the air. Once

the ball has been spotted, the hand has to be at an

estimated reception point (prediction T1). Then, this

reception point can be refined. In order to do so, the hand

must estimate and correct the anticipated trajectory of the

target ball (prediction T2) which is the object of attention.
Each hand will therefore be able to catch or miss the target

ball. If the ball is caught, the juggler will be able to throw it

in the air. Whatever the future of the first ball (caught or1Open Dynamic Engine, http://www.ode.org/

Figure 2. Instantiation of the framework for a virtual juggler.

Figure 3. The JABU application.
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missed), the juggler’s hand once again starts looking for the

next flying ball.

5.2. Predictions

Within the context of juggling, information must be

gathered quickly in order to maintain the juggling

dynamics. The use of perceptron-type NNs to make

predictions about the trajectory is adequate. Indeed, NNs

are quickly executed, and online learning occurs both

quickly and effectively. Furthermore, NNs correspond to

the need to manipulate (both spatial and temporal) digital

data. It is, of course, also possible to use deterministic

equation models of movement to make predictions.

However, such precise predictions would be extremely

noise-sensitive (disruption of the environment as the ball

falls) and would not account for the use of approximations

and readjustments in real-time which seem to be the basis

of the anticipatory mechanisms that we aim to respect [17].

5.2.1. Prioritizing the Balls (T1).
The NN T1 provides the estimated temporal and spatial

data for each ball at the moment it is thrown (see Figure 4).

These data are used to categorize the balls and attribute

them priorities so as to trigger the attentional process on the

priority ball. The data required to calculate these

estimations are the current speed of the ball and the

height h at which the ball has to be caught (see Table 1).

5.2.2. Refining the Prediction of the Target
Ball (T2).
NN T2 refines the spatial prediction about the place where

a ball will fall while it is falling down (see Figure 5 and

Table 2). Information can be obtained at different temporal

levels (according to (t).

5.3. Interaction Between Virtual Jugglers
and With the Human

The general features of this proposition allow interactions

between several jugglers. To do that, the only change is the

direction of the ball launched by each juggler (see

Figure 6).

The juggler can also catch a new ball thrown by a human

user (Figure 7). This is useful for evaluating the

believability of the virtual juggler (real-time decision-

making, online adaptation, etc.). Introducing a human user

also requires the introduction of a new type of prediction

(T3). One should note that T3 is similar to the prediction

T1, except that the ball is not thrown by the virtual juggler.

The human user interacts with the virtual juggler by using a

Wiimote (remote game controller from the Nintento Wii

console). This peripheral device measures the movements

of the human user’s hand.

Figure 4. T1 estimates the position at which it will cross the

hand plane (represented with circles) and how long it will take.

Table 1. Inputs/outputs of NN T1.Vx,Vy,Vz are the ball speeds

along the three spatial axes, (t is the time at which the ball is

supposed to reach the point (x and (y at the height of the hand.

Inputs Outputs Parameter Objectives

Vx Dt h Temporal classification

Vy Dx Vague

Vz Dy Spatial prediction

Table 2. Inputs/outputs of NN T2.

Inputs Outputs Parameter Objectives

Vx Dx (t Refined spatial

predictions

Vy Dy

Vz Dz

Figure 5. At any given time as the ball falls, T2 makes a more

accurate estimation of its position in (t seconds (represented by

blurred ball).
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5.4. Learning

The abstract world is represented by the functions encoded

in the NN T1, T2, and T3. They are updated in line from the

observation of several variables. In its example base, NN

T1 has access to throws made by the juggler itself (low

speed along x and y axes) whereas NN T3 records the balls

thrown at a distance by a third person (much greater

speeds). Each hidden layer has 19 neurons, which leads to

3� 19� 19� 3 multilayer perceptrons. Learning is, thus,

conducted with a maximum of 100 iterations using the

FANN2 [Fast Artificial Neural Network (FANN) library

available at http://leenissen.dk/fann/]. The parameters to be

determined for the NN of T1 and the NN of T2 are h and (t,
respectively. In the example under study, h¼ 2.5 cm and

(t¼ 0.1 second.

5.5. Disturbing the Environment Online

This section will deal with the evaluation of the

anticipatory mechanism with its qualities and impact on

decision-making and the final result: the juggler animation.

The generalization abilities of NN allow the in line

adaptation of the juggler’s motion to disturbances. For the

tests, the initial conditions are varied over a given time.

Moreover, 42 balls are thrown toward the virtual juggler

(one ball every 0.75 seconds). The purpose is to observe

the number of balls missed by the juggler (i.e., which fall

below its knees and which it is unable to catch). Two other

experiments consist in disturbing the juggler to validate

its robustness to variability in the environment. At first,

jerks are introduced in the projectile trajectories because

they become maces rather than balls (see Figure 8). In this

case-study, through the prediction by NN T1 is less

accurate, NN T2 is able to correct it properly, and the

juggler continues to juggle when balls are transformed in

maces.

Second, gravity in the virtual environment is varied,

and wind is added (see Figure 9). The juggler is not

informed of these changes.

Figure 10 shows the result for gravity variations.

In abscissa, the different values of gravity in m/second2.

In ordinate, the number of balls which are dropped is an

average over 10 tests of 1 minute each for each gravity

value. One can observe that juggling is possible for

gravitational values between 6 and 15 (normal gravity:

9.81). In cases of extremely low gravity, few balls are

recorded as dropped, as they have not time to fall to the

ground during the short simulation time. Figure 11 shows

results for wind variations. The acceleration according to

wind speed (in m/second2, with direction indicated by

positivity or negativity) is in abscissa. The number of

dropped balls is in ordinate. The average values are taken

Figure 6. Multiple-jugglers.

Figure 7. A human can juggle with virtual jugglers using the

Wiimote.

Figure 8. Juggling with maces.

2Fast Artificial Neural Network (FANN) library available at http://

leenissen.dk/fann/
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for five simulations for each wind value. About juggling,

the range of speeds in which the juggler continues to

juggle correctly is much smaller (between �0.2 and

þ0.2m/second2).

6. CONCLUSION

This study was based on the assumption that the behavioral

believability of a virtual entity can be increased by

integrating an anticipatory ability enabling the prediction

of the behavior by other entities and their impact upon

the environment. This led us to develop a conceptual

framework taking into account some results from cognitive

science. Its relevance was tested on the case-study of

juggling: a virtual juggler anticipates the trajectory of balls

without calculating them accurately. Indeed the juggler

hypothesizes within an open and uncertain environment

with variable properties, that is to say, that are unknown

from an analytical standpoint. Universal approximators

obtained through learning are used. One problem is that

this type of approximator is well adapted to trajectories

prediction but is certainly worst to address more complex

behavior like the anticipation of human activity for

instance. In such a case, it is important to address other

predictive model without losing the general features of

our proposition. For example, in Ref. [22], we propose an

algorithm to learn a fuzzy cognitive map. Such kind of

models is able to take into account behavior including

decision choice and memory. Of course, using such model

implies to define the link between the perception of the

character and the set of symbols which can represent the

behavior in the imaginary world.

Of course, this study address neither the quality of

gestures, nor the comparison with real data from juggling.

To do that, we have in perspective the improvement of this

proposition with realistic models of gesture by integrating

works like [24]. For the moment, the purpose was to show

that it is possible to exhibit plausible failures in the task

when taking into account simulation and anticipation.

We are currently orienting our investigations toward the

addition of different juggling strategies. The imaginary

world of a simulation within a simulation could be used

to test many different possibilities. The results of such

simulations would help to provide strategies which are

better adapted to the virtual world. In addition, we would

also like to work on a new kind of prediction dealing with

the behavior of the human interacting with the juggler.
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