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Abstract
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called Stable Growing Neural Gas (SGNG). The algorithm is able to learn how
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nature of the environment. The evaluation of the quality of the learned repre-
sentations are detailed.
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1. Introduction

This work contributes to designing a behavioral model for controlling believ-
able characters [1, 2] in video games [3]. Characters are controlled by computer
programs we call agents. We de�ne a believable agent as a computer program
able to control a virtual body in a virtual environment in such a way that other
human users in the environment believe that the virtual body is controlled by
a human user [4, 5].

Contrary to what is done in most video games [6, 7], agents' perception
abilities must be similar to those of a player. Agents should be able to handle
the �ow of time, remembering information from the past and thinking ahead,
enabling it to make plans. Finally, agents have to be able to evolve, changing
their behavior to make them more e�cient and believable [8, 9]. This evolution
must be fast enough for the players not to notice it, making them feel as if they
are playing against an evolved being.

In order to achieve behavior believability, the best method is imitation learn-
ing by which agents learn their behavior by observing one or more players [10, 8].
According to our de�nition of believability, this is the best way for agents to
resemble players. Indeed, the aim of imitation learning is to make agents act
like human players.

For agents to adapt to unknown environments, we enhanced the Growing
Neural Gas model (GNG) [11]. GNG is an algorithm usually used to perform
unsupervised tasks like clustering, interpolation or vector quantization. It rep-
resents data with a graph and automatically adapts the graph topology to the
data. In our case, the data concerns one or several players' positions. For a
given player, the data can be seen as a temporal series. Indeed, the position
of the player at time t is dependent on its position at time t − 1. The model
can then learn a representation of the volume of the environment which also
corresponds to how the players use that environment. The �nal representation
used by the behavior model is composed of the graph nodes alone: each node
represents a place where the agent can go but the edges do not provide any
information about how to access one node from another [12].

GNG appears to be an interesting algorithm for learning maps by imitation
because of its ability to learn topology. We argue that this aspect will make
agents use the environment in a more human-like fashion. It also removes the
burden from the map designers of manually de�ning the navigation graph. Its
settings do not change over time. This is particularly useful as we want the
algorithm to be able to adapt to changes in the map (for example a wall that
collapses).

However, GNG was not designed to work with temporal series but with
samples. Its node insertion policy does not suit our needs as it inserts nodes
at constant iterations and in the area with the maximum error. The constant
iteration insertion policy causes the network to grow in�nitely over time and the
insertion policy in the area containing the maximum error is not appropriate
when working with temporal series. By proceeding in this way, we may over-
sample an area of the map not frequently visited by players. The primary goal of
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this article is to provide a node insertion policy that overcomes these problems.
Moreover, although GNG has already been used in a video game [12], its

characteristics and parameters have not been studied for this kind of applica-
tion. The following questions have not been answered: What in�uence do the
parameters have on learning? How should we choose the parameters? How can
we accelerate the learning process? Answering these questions is the second
objective of this article.

In the following sections we will present a modi�ed version of GNG , called
SGNG . Unlike GNG , SGNG learning is continuous, thus re�ecting the dynamic
nature of the environment. In addition, we will analyze the algorithm's charac-
teristics, the quality of the learned topology and the in�uence of each parameter.
Finally, we compare GNG with SGNG . To be fair, this comparison will be made
with both temporal series and samples. We will see how our changes improve
performance over temporal series and the impact of results on data samples.
The paper is organized as follows: �rst we will present the SGNG (section 2).
Then, we will present the results (section 3). Finally, we conclude (section 4).

2. SGNG

First we will explain the reasons for choosing the GNG algorithm to learn
the representation of the environment and describe its principles in section 2.2.
Then we will introduce some modi�cations for the algorithm to suit our needs
in section 2.3.

2.1. Positioning

Models which control virtual humanoids use di�erent kinds of representa-
tions to determine paths to go from one point to an other. All the meshes used
to render the environment are too complex for agents to handle. As a conse-
quence, classic approaches use a graph to represent accessible places, with nodes
and paths between each place by edges (see �gure 1). Current solutions tend to
use a simple mesh, with di�erent degrees of complexity to represent the accessi-
ble zones (see �gure 2). The problem with the latter solution is that it requires
an algorithm to �nd the optimal path between two points, a path which may
not be natural or believable. Moreover, a graph solution is more suitable: each
node of the graph can be used by the model to attract or repel the character.

In video games, classical bots are designed to follow pre-de�ned waypoints
determined by the map designer. These bots need to have a waypoint �le for
each map, or a pathnode system embedded in the map. For example, Quake 3
Arena bots use an area awareness system �le to move around the map, while
Counter-Strike bots use a waypoint �le. Unreal Tournament 's series bots use
a pathnode system embedded in the map to navigate. To support the many
community-created maps, some games include an automatic mesh generation
system (for example Valve bots). The �rst time users attempt to play a cus-
tom map with bots, the generation system will build a navigation �le for that
map. Starting at a player spawn point, walkable space is sampled by "�ood-
�lling" outwards from that spot, searching for adjacent walkable points. Finally,
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Figure 1: A simple environment (obstacles are in grey) represented by a graph. Nodes are
represented by circles and edges by black lines. An avatar can move from one node to another
only if the nodes are connected by an edge. Usually, an A* is used to �nd the path between
two nodes.

Figure 2: A simple environment (obstacles are in dark grey) represented by a mesh. The
avatar can navigate in the zone de�ned by the mesh (in grey) because it knows there are no
obstacles in this zone. Di�erent algorithms can be used to �nd optimal paths.

dynamic bots are able to dynamically learn levels and maps as they play. Re-
alBot, for Counter-Strike, is an example of this. However, this learning is not
guided by human behavior. Navigation points obtained will therefore not pro-
duce believable behavior. The paths the bots use to go from one point in the
environment to another do not resemble those human players would take. This
problem comes not from the decision-making process itself, but from the repre-
sentation of the environment it uses. Indeed, the bots use navigation points in
the environment which may not accurately or naturally represent how players
use the same environment.

In order to achieve optimum believability, we want the nodes of the graph to
be learned by imitating human players (tracking human navigation). This work
was done in [13] where nodes and a potential �eld were learned from humans
playing a video game. Agents could then use this representation to navigate the
game environment, following the �eld de�ned at each node. In order to learn
the positions of the nodes, Thurau used an algorithm called GNG .
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2.2. GNG Principle

GNG [11] is a graph model capable of incremental learning. Each node has a
position (x, y, z) in the environment and has a cumulated error which measures
how well the node represents its surroundings. The fewer errors a node has, the
better it represents its surroundings. Each edge links two nodes and has an age
informing us when it was last activated. This algorithm needs to be omniscient
because the position of the human teacher needs to be known at any given time.

The principle of GNG is to modify its graph for each input of the teacher's
position in order to alter the graph to match the teacher's position. The model
can add or remove nodes and edges if they do not �t the behavior and change
the position of the nodes to better represent the teacher's position. Figure 3
provides pseudo code of the algorithm and its corresponding steps in �gure 4.
In �gure 4, we assume that the iteration number is a multiple of η.

while Number of nodes ≤ Nmax do
Get input position (4 (a))
Pick the closest (n1) and the second closest nodes (n2) (4 (b))
Create edge between n1 and n2 (4 (c)).
If an edge already existed, reset its age to 0.
Increase the error of n1 (4 (d))
Move n1 and its neighbors toward the input (4 (e))
Increase the age of all the edges emanating from n1 by 1 (4 (f))
Delete edges exceeding a certain age (4 (g))
if Iteration number is a multiple of η then
Find the maximum error node nmax
Find the maximum error node nmax2 among the neighbor of nmax (4 (h))
Insert node between nmax and nmax2 (4 (i))
Decrease the error of nmax and nmax2

end if

Decrease each node's error by a small amount (4 (j))
end while

Figure 3: The GNG algorithm as de�ned in [11]. Comment (4 (X)) corresponds to step X
from �gure 4.

2.3. Modi�cation of the GNG: SGNG

The version of GNG we use is modi�ed as shown in �gure 5. The two main
problems with GNG is that it fails to handle temporal series appropriately, and
it continues to grow over time.

The constant iteration insertion policy causes the network to grow in�nitely
over time. This problem can easily be overcome by increasing the number of
nodes in the network, but how can we de�ne this maximum number of nodes?
Obviously, a large map probably needs more nodes than a smaller one. We
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4: Steps of the GNG algorithm. The black cross is the input, black circles are the nodes
of the GNG and black lines are the edges of the GNG. Gray shapes represent the obstacles
in the environment.

could also stop the learning process when a suitable number of nodes is reached
but we also need the GNG to adapt to variations in the use of the map. If the
teacher suddenly uses part of the map which he/she has not yet explored, the
GNG should be able to learn this new part even if it has been learning for a
long time.

The insertion policy in the area containing the maximum error may over-
sample an area of the map not frequently visited by players. Inserting a node
in the current area of the temporal series seems to be more appropriate.

We propose that instead of inserting a new node each η input, a node should
be inserted when the error of a node is superior to a parameter Err. In this way,
we add nodes only in the area just visited by the player (avoiding maximum
error area search) and we add nodes only when the network fails to �t the data
suitably. As the error of each node is reduced by a small amount Err for each
input, the modi�ed GNG algorithm does not need a stopping criterion. Indeed,
if there are many nodes which accurately represent the environment, the error
added for the input will be small and for a set of inputs the total added error
will be distributed among several nodes. Decreasing the error will avoid new
nodes being added to the GNG , thus resulting in a stable state. However, if the
teacher goes to a place in the environment he/she has never been before, the
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added error will be high enough to counter the decay of the error, thus creating
new nodes.

This algorithm has �ve parameters which in�uence the density of nodes, the
quality of the representation, adaptability and convergence time:

• The attraction
−−−−−→
attract1 applied to n1 toward (x, y, z)

• The attraction
−−−−−→
attract2 applied to the neighbors of n1 toward (x, y, z)

• The error decay for nodes, Err

• The maximum error for the nodes, Err

• The maximum age for the edges, Age

SGNG has a complexity of O(n) where n is the number of nodes in the
graph. This should leave plenty of computing power for other algorithms. The
algorithm is entirely capable of handling data from several teachers. By giving
input from several teachers we should greatly increase learning speed. The only
drawback with this technique is that di�erent teachers can use the environment
very di�erently. As a consequence, the learned SGNG may re�ect neither of the
individual teachers' behaviors.

3. Results

In section 3.1 we will �rst present the results and explain how we will mea-
sure their characteristics and quality. Then we will study the in�uence of each
parameter in section 3.2. As learning speed is very important, we will explain
some possible ways of increasing this speed in section 3.4. Finally, we will
compare GNG and SGNG in section 3.5.

3.1. Measures and Representation of the Results

3.1.1. Application to UT2004

Tracking the position of the teacher in the game Unreal Tournament 2004
(UT2004) is easy using Pogamut [14]. SGNG can be given the position for
learning. The di�culty is in �nding parameters (see section 2.3) for SGNG to
generate a representation with enough nodes for the agent to be able to move
in the environment but not so many as to overload the agents with informa-
tion. We have to choose these parameters empirically as they cannot be found
analytically, nor can we use an optimization algorithm. The parameters giving
representations similar to those usually found in video games are as follows:

• −−−−−→attract1: Attraction force applied to the closest node first from the input
is 0.03 times the vector input− first

• −−−−−→attract2: Attraction force applied to first's neighbors is 0.0006 times the
vector input− first

• Err: The error decay for the nodes is 6 UU (Unreal Unit)
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nodes ← {}
edges ← {}
while teacher plays do
(x,y,z) ← teacher's position
if |nodes| = 0 or 1 then
nodes ← nodes ∪ {(x,y,z,error=0)}

end if

if |nodes| = 2 then
edges ← {(nodes,age=0)}

end if

n1 ← closest((x,y,z),nodes)
n2 ← secondClosest((x,y,z),nodes)
edge ← edges ∪ {{n1,n2},age=0)}

n1.error+=||(x,y,z)-n1||
Attract n1 toward (x,y,z)
∀ edge ∈ edgesFrom(n1), edge.age++
Delete edges older than Age
Attract neighbors(n1) toward (x,y,z)
∀ node ∈ nodes, node.error-=Err

if n1.error > Err then
maxErrNei ← maxErrorNeighbour(n1)
newNode ← between(n1,maxErrNei)
n1.error/=2
maxErrNei.error/=2
newError ← n1.error+maxErrNei.error
nodes ← nodes ∪ {(newNode,newError)}

end if

end while

Figure 5: Algorithm used to learn the topology of the environment.
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• Err: The maximum error for the nodes is 16000 UU

• Age: The maximum age for the edges is 75

In order to be able to make comparisons with other environments, the position
in Unreal Tournament is given in UU (1 meter is roughly equal to 50 UU).

3.1.2. Representation of the Environment

With those parameters we trained two SGNG on two di�erent environments.
The �rst is a simple environment called Training Day ; it is small and �at which
is interesting in order to visualize the data in two dimensions. The second,
called Mixer, is much bigger and more complex with stairs, elevators and slopes
which make it interesting to see how SGNG behaves in three dimensions. The
results are given in �gure 6 for the simple environment and in �gure 7 for the
complex environment.

1000

1500

2000

2500

3000

-2500 -2000 -1500 -1000 -500 0 500

p
o
si

tio
n
 (

y)

position (x)

SGNG edges
SGNG nodes

Figure 6: Result of a SGNG learned from a player for a simple environment after 30 minutes,
top view.

As the complex environment is hard to visualize we focus mainly on the
simple one in this section to make the explanation easier to understand. How-
ever, SGNG is able to represent complex environments just as well as simple
environments.

3.1.3. Measures of Time Evolution

In order to study the quality of the learned topology, we �rst choose to
compare the nodes of the SGNG with the navigation points placed manually by
the environment's creators. Here, the objective is not to show that the behavior
is more believable, but to ensure that it is acceptable from the point of view
of a human expert. In the following, node will always refer to the SGNG and
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Figure 7: Result of a SGNG learned from a player for a complex environment after 1 hour.

navigation point to the representation made by the environment creators. We
do not want the SGNG to exactly �t the navigation points, but they can help
as an initial evaluation of the learned representation. In the game UT2004, we
have those navigation points but our goal is for them to no longer be necessary
for an agent to move around a new environment. The representations learned
by the SGNG should also facilitate more believable behaviors as they already
provide information on how players use the environment.

Figure 8 shows both the navigation points and the nodes of the SGNG for
the simple environment. As we can see, the two representations look alike, indi-
cating that the model is very e�ective at learning the layout of the environment.
However, there are zones where the SGNG 's nodes are more concentrated than
the navigation points and others where they are less so. We cannot tell now if it
is good behavior or not as we need to evaluate an agent actually using this rep-
resentation to see if it navigates well. Even in the less concentrated zones, the
nodes are always close enough to be seen from their neighboring nodes, which
at least makes node-to-node navigation possible.

As the qualitative evaluation of the representation is not su�cient, we in-
troduce two measures, the principles of which are borrowed from statistics:
sensitivity and speci�city.

Sensitivity. Sensitivity measures how successfully the SGNG represents the
part of the environment the teacher used, which can be seen as true positives.
mindist(a,B) is the minimum distance between point a and the points in set
B. We computed this measure using the following formula:

Sensitivity ∝ 1∑
imindist(NPi, nodes)

(1)

Where NPi is the i
th navigation point. The higher the value, the more sensitive

the SGNG .

Speci�city. Speci�city measures how much the SGNG did not represent the part
of the environment the teacher did not use, which can be seen as true negatives.
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Figure 8: Comparison of nodes learned by the SGNG (in red) with the navigation points
placed manually by the game developers (in green). The environment viewed from above is
visible in the background.

We computed this measure using the following formula:

Specificity ∝ Number of Nodes∑
imindist(Nodei, NPs)

(2)

The higher the value, the more speci�c the SGNG .

Number of Nodes. In the following, we will also study the number of nodes the
SGNG has, as we do not want the SGNG to have too many or too few nodes.

As the attraction applied to the nodes for each input is constant, the SGNG
does not converge to a totally stable state. The small variations in the distance
in �gure 9 shows that the SGNG nodes still move. This is intentional as it
enables the SGNG to adapt to a variation in the use of the environment: if
the teacher suddenly uses part of the environment which he/she has not yet
explored, the SGNG will still be able to learn this new part even if the SGNG
has been learning for a long time.

Even if the SGNG does not converge, we do not want it to grow inde�nitely.
We also want the model to give similar results for similar behaviors. Figure 10
shows that even after 10 hours, the number of nodes is not higher than after 30
minutes and even that the solutions represent the environment better. It also
shows that running the SGNG twice on similar behaviors gives similar results in
terms of shape and number of nodes. Two SGNG learnings on the exact same
data therefore give the exact same representations.

Models learned from di�erent teachers do not give the same results and the
time evolution is also quite di�erent (see �gure 11). Depending on the behavior,
the SGNG can reach a stable state much more rapidly. For this reason we will
only compare SGNG which learned on the exact same data in the following
experiments.
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Figure 9: Time evolution of the SGNG number of nodes and the cumulated distance between
the SGNG nodes and the navigation points.
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Figure 10: Comparison of two SGNG learned on the same environment after a very long
training period of 10 hours.
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Figure 11: Comparison of four SGNG learned from di�erent players.

3.2. In�uence of the Parameters on Learning

We listed �ve parameters for the SGNG and gave values for our implemen-
tation to give similar results to representations used in UT2004. In order to
be able to identify those parameters we will now describe the in�uence on the
results for each of the parameters and on the time taken to generate an accurate
representation. As each of the parameters in�uences several characteristics of
the SGNG , we will explain how to choose the parameters at the end of each
analysis.

3.2.1. Attraction of the Winning Node

When an input is given to the SGNG , the closest node, the winner, is moved
by a certain amount toward this input. We will analyze the impact of the force
of attraction applied to the winning node with the results in �gure 12.

Number of Nodes. A high force makes the SGNG produce less nodes because,
as the nodes move closer to the input, their error is lower. Nodes are thus less
likely to reach the maximum error causing a new node to be added. Similarly,
a low force makes the SGNG produce more nodes.

Sensitivity. A high force of attraction makes the nodes move more. As a result,
the SGNG is less stable causing variations in the representation shown by less
stable sensitivity. There is no big di�erence in �nal sensitivity, the greater
sensitivity for the low force must come from the higher number of nodes.
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Speci�city. As is the case for sensitivity, a high force of attraction makes the
value �uctuate showing that the SGNG is not very stable. However, the at-
traction must be strong enough to attract nodes which do not represent the
environment: a low force of attraction generates too many useless nodes result-
ing in low speci�city.

Time to Stability. A strong force of attraction makes the model converge to
a stable state more rapidly because the nodes are more rapidly distributed
through the whole environment. This can be seen with the stabilization of the
three measures, which occurs earlier for a high value of the parameter than for
a low value.
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Figure 12: Comparison of the time evolution of SGNG which learned on the same data but
have di�erent values for the adjustment of the winning node toward the input. The higher the
attraction, the faster the SGNG converges, the less nodes the SGNG has and the less stable
the representation.

3.2.2. Attraction of the Nodes Neighbouring the Winning Node

Once the winning node has been attracted toward the input, the same occurs,
with a lesser force, to all the nodes neighboring the winner. The time evolution
for the three measures is given in the �gure 13.

Number of Nodes. The applied force of the neighboring nodes has little or no
impact on the number of nodes the SGNG creates.
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Sensitivity. As is the case for the force applied to the winner, the higher the
force applied to the neighboring nodes, the less stable the SGNG . With a low
force, the model is more stable and has better sensitivity because the SGNG is
more able to generalize.

Speci�city. Conversely a low force of attraction does not enable the SGNG to
move foreign nodes closer to the teacher. Consequently, speci�city is better
with a high force, able to move "false positive" nodes toward a more suitable
location.

Time to Stability. The force of attraction of the neighboring nodes does not
seem to in�uence the time the SGNG takes to reach a stable state. However, a
high force makes the SGNG so unstable that it is di�cult to determine when
the structure of the SGNG has �nished evolving.

 0

 10

 20

 30

 40

 0  200  400  600  800  1000  1200  1400  1600

N
o

. 
o

f 
n

o
d

e
s

time (s)

 0

 10

 20

 30

 40

 50

S
e

n
s
it
iv

it
y

 0

 10

 20

 30

 40

 50

 60

S
p

e
c
if
ic

it
y

Normal neighbours attraction force
Low neighbours attraction force
High neighbours attraction force

Figure 13: Comparison of the time evolution of SGNG which learned on the same data but
which have di�erent values for the adjustment of the neighbors of the winning node toward
the input. The higher the attraction, the less stable the representation.

3.2.3. Maximum Error for Nodes

When the nodes have been moved, if the winning node exceeds Err, a new
node is created. We will now study the in�uence of this value, the maximum
error for a node with the results given in �gure 14.
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Number of Nodes. This parameter has a big impact on the number of nodes.
The lower the error, the more nodes are created because the more likely they
are to exceed the value.

Sensitivity. Because a low error makes the SGNG produce more nodes, sensi-
tivity is higher. Indeed, the higher the number of nodes, the more likely it is
that a node will be close to a navigation point. Therefore the maximum error
does not seem to directly in�uence sensitivity.

Speci�city. As we have already seen, a low error makes the SGNG create nodes
more often, even if they are not useful for the accuracy of the representation of
the environment. Therefore, a low error increases SGNG speci�city by reducing
the number of useless nodes.

Time to Stability. The maximum error does not have a very signi�cant impact
on the time the SGNG needs to reach a stable state. It seems, however, that a
low error makes the SGNG converge slightly faster. This may be due to rapid
creation of nodes across the environment.
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Figure 14: Comparison of the time evolution of SGNG which learned on the same data but
which have di�erent values for the maximum error admitted for nodes before the creation of
another node in the SGNG. The higher the maximum error allowed for a node, the less nodes
the SGNG has.
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3.2.4. Maximum Age for Edges

Each time a winning node is selected, each edge connected to this node sees
its age incremented by one. If the age exceeds Age, the edge is deleted. The
in�uence of this parameter will be studied in �gure 15.

Number of Nodes. Maximum age has no signi�cant in�uence on the number of
nodes.

Sensitivity. Maximum age has no signi�cant in�uence on sensitivity. Indeed,
the slight di�erence comes from the di�erence in number of nodes.

Speci�city. Surprisingly, this parameter has no in�uence on speci�city. We
could have expected edges lasting only a few time steps to leave nodes alone
where they do not represent the environment correctly. A more detailed study
needs to be done to validate this result.

Time to Stability. Maximum age has no in�uence on time the SGNG needs to
be stable.
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Figure 15: Comparison of the time evolution of SGNG which learned on the same data but
which have di�erent values for the maximum age admitted for edges before they are deleted.
No change in the results was observed.
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3.2.5. Error Decay

With each time step, the SGNG reduces the error for each node by Err. The
time evolution of the three measures depending on the value of this parameters
is given in �gure 16.

Number of Nodes. A low error decay makes the nodes more likely to reach the
Err, thus making the SGNG create more nodes. Similarly, a higher decay makes
the SGNG create less nodes.

Sensitivity. The di�erence in sensitivity mainly arises from the di�erence in the
number of nodes, thus the parameter does not directly a�ect sensitivity.

Speci�city. A high decay increases the speci�city of the model. We are not
sure of the reasons for this behavior. It may be because the model reaches its
maximum number of nodes more quickly, thus enabling the SGNG to improve
the representation without the disturbance of new nodes.

Time to Stability. The SGNG reaches a stable state faster with a high decay
because the error shared between all the nodes is rapidly compensated by the
decay. Similarly, a low decay makes the SGNG very slow to converge because
new nodes are added long after learning begins.

3.3. How to Choose the Parameters

The Age parameter can be chosen easily as it does not in�uence the results.
A value of 0 should be avoided as it would impede the attraction of neighboring
nodes, which would alter the results.

A high Err can be then used to reduce the convergence time of the model.
However this value is linked to the Err, so if the decay is very high, the maximum
error must be too.

A rather high force of attraction should be applied to the winner, keeping
in mind that an excessively high value will make the SGNG less stable. If the
teacher often discovers new areas, the force should be high in order to allow the
SGNG to adapt more quickly.

Similarly, the force of attraction applied to the neighboring nodes should be
high enough to avoid having nodes which would be useless or even harmful for
believability. However, a high force will also make the SGNG less stable.

Finally, the Err can be chosen according to the value of Err so that the
representation gives enough nodes for the agent to be able to navigate the en-
vironment but not so many as to overload it with information. The notion
of "overloading" depends mainly on the behavioral model: if it is capable of
handling a great deal of information, Err can be set to a low value.
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Figure 16: Comparison of the time evolution of SGNG which learned on the same data but
which have di�erent values for node error decay. The higher the error decay, the less nodes
the SGNG has and the higher the speci�city.

3.4. Increasing Representation Learning Speed

The speed with which the agents learn the representation of the environment
is very important. If the agents do not have correct representation of the en-
vironment, they cannot navigate it and worse, they cannot learn any behavior.
Indeed, the decision-making algorithm cannot associate actions to stimuli if the
stimuli are not yet de�ned. We will see how to increase learning speed without
compromising the quality of the representation.

3.4.1. Learning from Several Teachers

SGNG can handle input from several teachers. Figure 17 shows our three
measures for SGNG trained by one, two, three and four teachers. Learning from
multiple teachers is slightly faster. Moreover, learning with multiple teachers
generates SGNG with better results in sensitivity and speci�city, and yet the
number of nodes is the same. As a consequence, SGNG should be learned from
as many players as possible in order to optimize results. In addition, there
should be more teachers in larger environments to accelerate learning.
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Figure 17: Comparison of the time evolution of SGNG which learned from 1, 2, 3 and 4
di�erent teachers simultaneously. The more teachers there are the faster the learning, but
also the more stable the representation.

3.4.2. Input Frequency

The last evaluation assesses the impact of the frequency at which the demon-
strator's position is given to the SGNG . For the previous experiments, the fre-
quency was set at 10Hz. Figure 18 shows the di�erences for 1, 5, 10 and 20 Hz
(Pogamut does not allow higher than 20Hz). Results indicate that the higher
the frequency, the faster the SGNG stabilizes and the better the results in terms
of sensitivity and speci�city. With high frequencies the number of nodes is a bit
higher but the main problem is the stability of the representation. Sensitivity
and speci�city vary greatly at 20Hz. A variable frequency could be used to
accelerate learning at the beginning and to avoid instability when most of the
learning has been achieved.

SGNG proves to be very e�cient at learning the topology of an environment
though imitation. Learning is quite fast, even for complex environments. Al-
though the model does not converge toward a unique and totally stable solution,
the representations are similar in shape and accuracy. The advantage of this
constant evolution is that the model can adapt quickly to changes in the use of
the environment.
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Figure 18: Comparison of the time evolution of SGNG learning at 1, 5, 10 and 20Hz. The
higher the frequency, the faster the learning but the less stable the representation.

3.5. Comparison GNG/SGNG

3.5.1. Synthetic Data

To compare GNG and SGNG , it is more convenient to use synthetic data.
In this way, we have a controlled environment in which the indicators described
above will be more accurate. The environment used is a parametric butter�y
curve for which we want to discretize the trajectory:

ρ = 100ecos(θ) − 2 ∗ cos(4θ) (3)

We will use an additional indicator representing how the nodes are dispersed.
Indeed, as we want to learn a navigation graph, we want the nodes to be well
distributed thoughout the area. In other words, we want the density of nodes
to be as constant as possible. We propose a new measure:

DensityHomogeneity ∝ NumberofNodes∑
i (mindist(Nodei, Nodes)−NearNeiDist)2

(4)

where NearNeiDist is the mean of mindist(Nodei, Nodes).
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As a �rst comparison of this synthetic environment, we empirically found
GNG settings to yield the highest scores possible on indicators for a number of
nodes arbitrarily set to 100. Settings common to both SGNG and GNG were
chosen identically and the Err parameter was chosen so that the number of
nodes stabilized at around 100. Figures 19 and 20 illustrate the results. We
can see that sensitivity is better even when there are twice as many nodes in
GNG than in SGNG . As the number of nodes in GNG became higher than for
the SGNG , GNG speci�city overtook that of SGNG . However, for the same
number of nodes, SGNG performed better. The density variation indicator is
always better in SGNG than in GNG .

Figure 19: Evolution of Indicators for SGNG and GNG on synthetic temporal data

Figure 21 provides performance indicators for di�erent values of parameters
η for GNG and Err for SGNG . The performances are compared when the
number of nodes of GNG is equal to the performance of SGNG . SGNG almost
always outperforms GNG .

Next, we did the same experiment with the same parameters but with a
sample taken from the butter�y curve. The results rea presented in �gures 22
and 23. As expected, this time, GNG outperforms SGNG . But both sensitivity
and speci�city are very close when GNG and SGNG have the same number
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Figure 20: Evolution of SGNG (top) and GNG (bottom) on synthetic temporal data

of nodes. Convergence is faster with SGNG than with GNG . We can see in
�gure 23 that the rapid growth of SGNG generates nodes far from the data
distribution, thus decreasing speci�city. This could be avoided by adding a
simple removal policy. We expect that by making a few changes to SGNG , we
might be able to provide an algorithm e�ective for both temporal series and
data samples with better convergence speed than GNG .

3.5.2. UT2004 Environment

Figure 24 illustrates a comparison between GNG and SGNG , using three
measures during learning in the simple environment.

The problem with GNG is that the number of nodes increases steadily so
that the representation quickly becomes too large to be managed by the decision-
making model. Unlike GNG , SGNG stabilizes quickly, which is what we are
aiming for. Over time, the graph shows that SGNG provides better sensitiv-
ity faster. However, as the number of nodes GNG increases continuously, the
sensitivity of GNG eventually exceeds that of SGNG . Note that for the same
number of nodes (vertical dotted line), the sensitivity of SGNG is greater. The
last measurement is speci�city, and again the SGNG converges faster than the
GNG . After a while the two representations become identical.

Overall, SGNG performs better than GNG , giving good results faster and
generating a more stable solution. These two advantages, speed and stability,
allow the model to quickly generate a reliable representation.

3.6. Discussion

SGNG behaves very well using input positions from players. It is possible to
adjust the graph's level of detail making the nodes much closer and numerous
or, on the contrary, reducing their number. The model quickly converges to
a solution; in about 10 minutes for a simple environment and 25 minutes for
a complex one. It is possible to increase convergence speed by imitating more
than one player, halving learning time in the better cases. Finally, the model
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Figure 21: SGNG and GNG performance using di�erent parameters.
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Figure 22: Evolution of indicators in SGNG and GNG on a synthetic sample

Figure 23: Evolution of SGNG (top) and GNG (below) on a synthetic sample
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Figure 24: Comparison GNG/SGNG

can be left to learn for a very long period of time without fear of it growing
inde�nitely. It is even recommended to let the model learn for it to be able to
learn new places in the environment if players begin visiting them only later in
the game. However, the information gathered and given to the agent is limited
to the nodes of the graph.

4. Conclusion

In order to make the agents adapt to unknown environments without help
from programmers, we wanted them to learn the layout of the environment by
imitation. As our main objective is believability, we also want the representation
to re�ect how players use the environment, to make it easier for the agents to
reproduce these behaviors.

In order to represent and to learn the environment, we modi�ed a model
named GNG which updates a graph according to input coordinates. The graph
stretches and grows to cover the entire space where the player has been observed
to go. The model was modi�ed to be able to learn continuously from players
without growing inde�nitely. However, it is important for the graph to be
able to grow later in the game if the teacher begins to use a new part of the
environment.

SGNG behaves very well with the input positions from players. We studied of
each of the SGNG parameters and explained their in�uence. The representation
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learned is very similar to usual representations found in video games which are
used by the agents to navigate the environment. Agents are thus able to adapt
to totally unknown environments.

The next step is to choose or design a decision-making model using the
results of SGNG . The central notion will continue to be believability. To be
able to achieve optimum believability, we want agents to behave like human-
controlled virtual characters. Indeed, there is no better example of believable
behavior than human behavior itself. Thus, learning and particularly imitation
learning seems the most appropriate solution. We will put forward a two-step
method to develop new models for believable agents. First we must �nd the
criteria for believability and de�ne how it can be evaluated. We will then design
the decision-making model and the learning algorithm.

The �nal step will be to evaluate our work by gathering a pool of players
from whom the agents can lean their behavior. When learning is complete, we
will try to assess the believability of our agent. As believability is subjective, it
is very di�cult to evaluate [4]. An overview of evaluation methods has already
been compiled in [15]. Working with psychologists, we will carefully study how
to evaluate believability. Indeed, believability experiments must involve people
expressing their feelings about the test subjects. We will do a test based on
[16, 17], using humans as judges.
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