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The L2-Optimal Time-Delay Rational
Laplace Model Revisited

P. Vilbé, S. Azou, P. Bŕehonnet, and L. C. Calvez

Abstract—An optimization technique is provided for the approximation
of the pure time delay. Owing to a near-optimal starting point, the
integral square error is reduced through few iterations of a Gauss–Newton
process. Compact implementation and robustness should encourage a
large use in various engineering domains.

Index Terms—Gauss–Newton optimization, mathematical techniques,
pure time-delay model.

I. INTRODUCTION

Electronic circuits frequently involve pure time-delay components,
or include an active subsystem reacting as a pure delay or are
modeled as pure delay connected with a linear or nonlinear model.
Mathematical time-delay models used today in various software tools
are based on the Padé approximation [1]. This model is easy to
implement but, obtained from a Mac-Laurin series expansion ofe�s

about zero, it is known that the approximation is quite accurate only
for great values oft. For transient response analysis the small time
behavior must not be neglected. Various suboptimal approximations
are available, but this work focuses on theL2-optimal approximation
of the time delay over[0; 1[.

In engineering applications, optimization procedures are sometimes
dreadful but, when carefully mastered, they become a powerful tool
(root finding is a well-known example). Making a secure starting
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procedure based on a suitable initial parameter set is a nonobvious
problem. For engineering purposes, an autoboot procedure without
any human intervention for any usual required order is looked for.
It will be shown here that a clever implementation easily yields the
L2-optimal model.

The first section summarizes previous results about the approxima-
tion of a known signal with irrational Laplace transform. Efficiency
of the optimization process for the time delay modeling relies on
some remarks introduced in Section III. The last section analyzes the
quality of the proposed procedure.

II. BACKGROUND

Modeling the unit time delay is formulated as the minimization of
the scalar cost functionQ

�
= he; ei wheree = ~f � f reflects the

discrepancy between the response~f(t) of the unknown model and
the ideal rectangular pulsef(t) = U(t)� U(t � 1)

Q
�
= he; ei; with e(t) =

n

i=1

rie
�b t � f(t)

and
Re(bi) > 0; i = 1 � � �n
bi 6= bj ; for i 6= j

(1)

where hf; gi stands for the scalar product of two complex valued

functions and is defined ashf; gi
�
=

1

0
f(t)g�(t)dt.

As seen in [2], approximation with exponential sums has been
extensively investigated in the past. However, focusing on the specific
problem of time delay modeling, present work takes advantage of
more recent development [3], [4].

Dealing with the representation of signals with known Laplace
transforms f̂(s), pioneering works [5], [6] have shown that this
approximation problem in the time domain is transformed into an
interpolation problem in the Laplace domain and theL2-optimal
solution satisfies the following basic equations:

ê(s) js=b = 0;
ê0(s)js=b = 0;

with ê(s) = ~̂f(s)� f̂(s):

It is known that theL2-optimal residues derive from the standard
least squares theory and thus are obtained as the solution of a set of
linear equations. It will be seen further, that for the present problem
constraining the parameters is required. Thus, with Calvezet al. [3]
the optimal vector of residuesri is written as

r =M(f   + ���) with
M = 	T

�1

= CTC�

��� = LH LMLH
�1

(y � LMf   )
(2)

where the superscript� stands for the conjugate andH for the
conjugate transpose.

Comments.

1) From the classicalL2 theory it is known that the unconstrained
solution is given by	Tr = f   where	 denotes then � n

Gram matrix with element(i; j) equal to h i;  ji. At this
stage, the set of approximating functions is composed of then

distinct exponentials i(t) = e�b t and vectorf   denotes the
vector with ith componentf = hf;  ii.

2) When an orthogonalization process of the basis functions is
available, the second expressionCTC� for M is used to get
a closed-form formula, avoiding possible numerical inversion
problems.
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3) The standard unconstrainedL2 solutionMf   is corrected with
the additive contributionM��� introduced when the linear con-
straint equationLr = y must be satisfied. In most engineering
problems the number of constraints is a small integer, thus
the rank l of the square matrixLMLH is small and the
computation of the required inverse is a very simple task. In
the sequel, at least one constraint equation will always be set in
order to preserve the low-pass filter characteristic of the model.

In contrast, the problem is nonlinear in thebi and improv-
ing the exponential exponents requires linearization. Let��� =
(�r1; �r2; � � � ; �rn; �b1; �b2; � � � ; �bn) denote a vector of
small corrections which, neglecting second-orders terms, yields the
first-order changes� ~f = 2n

i=1 �i i with

 i(t)
�
=

 i(t); i = 1 � � �n

 0

i�n(t) =
@ ~f(t)

@bi
= �rite

�b t; i = (n+ 1) � � � 2n:

After correction, the new error ise� = ~f + � ~f � f =
� ~f � (�e) and the �i which minimizes the energyQ� =
he�; e�i can be seen as the coefficients of the best rep-
resentation of �e in terms of the extended basis functions
f ig

�
= fe�b t; � � � ; e�
 t; �r1te

�b t; � � � ; �rnte
�b tg. Simi-

larly to (2) the best coefficients�i are obtained from the standard
least-squares theory as

��� =M �e
   
+ ��� with

�
M = 	

H �1

= C
T

C
�

��� = L
H

LML
H

�1

y + L sMe
   
; y = 0

(3)

where then lower components of��� (denoted by the vector���l) are
used as the progressing step for thebi parameters. Thus, for the
(k + 1)th iterationb(k+1) is written as

b
(k+1) = b

(k) + ���l:

Comments.

1) Since [7] it is known that a such correction gives rise to a
Gauss–Newton optimization process.

2) Managing linear constraint equations on the parametersri, bi
requires the following extension:

L��� = 0

with

lij
�
=

lij ; j = 1 � � �n

l0ij = rj�n
@lij�n(b)

@bj�n
; j = (n+ 1) � � � 2n (4)

which must not be omitted even when theri are the only
parameters subject to constraints.

3) As above, owing to a possible orthogonalization process of the
2n functions of the extended basis, a closed-form inverse can
be used.

III. N UMERICAL COMPUTATIONS

Beyond the shortness and convenience of the preceding expres-
sions, the optimization process requires a careful and clever imple-
mentation, noticing the mathematical validity hypotheses and finite
numerical accuracy. In short, the most important hypotheses can be
summarized as follows.

1) The corrective term��� is significant only in the neighborhood
of a local extrema.

2) The concept of a set of approximating functions requires that
the functions be linearly independent.

3) The quadratic criterion holds only if the basis functions are
energy bounded.

Remark 1: The first item sets the hard problem of finding a
starting point for the iterative process. The procedure must boot
with an arbitrary solution, sufficiently close to the unknown optimal
solution. If a high-quality starting solution is not systematically found,
then a special and robust starting iterative procedure (gradient for
instance) must be executed first, before commuting and locking to
the efficient Gauss–Newton iterations. However, such a process is
rather cumbersome and tedious and it will be avoided in the present
particular case.

As specified in the second item, assuming linear independence
when modeling various signals gives rise to an important difficulty.
It must be considered that, during the migration of the poles through
the complex plane, their type may change, i.e., a pair of complex poles
may become two real poles or vice versa. Thus, there is a possible
crossing by a double pole, which generates a new function to be
added to the previous set. Such work has been done soon by Harman
et al. [8]. On the opposite, Vilb́e et al. [4] introduced approximating
functions avoiding this heavy managing overhead. In the present case,
it will be found that the proposed high quality starting set of poles
avoids the merging poles process.

The third item means that, for each new set of poles the stability
of all approximation functions has to be tested.

We now emphasize some numerical aspects, leading to theL2-
optimal models of delay described in the next section and corre-
sponding to the Matlab scripts of the Appendix.

Computation ofM andM: In most least squares problems deal-
ing with high-order approximation, the closed forms forM andM
are welcome. However, since the	 and	 matrices are Hermitian, a
standard inversion algorithm taking advantage of this property yields
reliable results as long as a quasi-double pole is not present. It should
be noted that a merging pole would also give rise to numerical
difficulties in an orthogonalization process, if a specific detection
and treatment is not provided. Here the two following matrices will
be inverted using the standard Matlab function:

	 =
	11	12

	H

12	22

; 	11 =	 (5)

with

	11(i; j) =
1

bi + b�j
; 	12(i; j) =

�r�j

bi + b�j
2

	22(i; j) =
2rir

�

j

bi + b�j
3 :

Projections Vectorsf   ande
   

: Dealing with known Laplace
transform signals, the projected vectors are readily obtained from
the Laplace transform

f 
�
= hf;  ii = f̂(s)

s=b
(6)

and the extension from its first derivative

with

f 
�
= f;  

0

i = r
�

i

@f̂(s)

@s
s=b

; e
   
=

~f � f 
~f � f 

: (7)

It should be noted that for a computational convenience the stair
case signal (see function in the Appendix) is modeled rather than
the delayed step.
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Fig. 1. Upper left-quarters plane.

Fig. 2. Line pencils for even orders.

Constraints: The ability of the method to manage linear equality
constraints will be greatly appreciated here in order to preserve the
low-pass filter behavior of the required model. The initial value of
the modeled signal is settled by the following equations:

n

i=1

ri i(0) = 1; thusL = (1; � � � ; 1) andy = 1

L =
n n

:

In this modeling application, when a great care of the frequency
behavior at some prescribed frequencies is wanted, extra constraint
equations can be added. Preserving values of the Fourier transform
at some prescribed frequencies yields two linear equations for each
frequency point.

Starting Procedure:A reliable set of starting poles is of high
practical interest. For investigation purposes, basing the selection of
initial parameter values on the results of the previous lower order
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Fig. 3. Line pencils for odd orders.

TABLE I
LINE PENCILS FOR EVEN ORDERS AND ODD ORDERS

approximation is a common practice [8]. Here, such an approach
must be rejected and an automatic boot procedure is proposed.

Another way would be the initialization with a suboptimal approxi-
mation. The known nonoptimal classical Padé approximation could be
expected as a worthwhile starting point. Unfortunately, the delay time
Pad́e approximation, rather good for large values of time, is rather
poor in theL2 sense. Moreover, when optimizing, it is experimentally
seen that this starting pole map leads invariably to a double pole for
orders greater than six.

As was mentioned before, this difficulty has been previously
overcome by some authors. However, for the particular pure delay
time signal, all the burden of merging poles management (detection,
extension of the basis of functions, and extension of the extended
basis) will be avoided due to another starting map.

The proposed boot procedure relies on simple geometrical consid-
erations. By a glimpse at the pole positions of optimal models for
various orders (n = 2 � � � 12), in Fig. 1, it seems that for each of
these even orders, the optimal poles are quasi-aligned. Furthermore,
adjoining the poles of a fix index, but with increasing orders, also
yields quasi-straight lines. From these two simple remarks the linear
regressions which fit the poles by simple straight lines have been
systematically computed. It appears that the optimal poles are not so
far from the intersection point of two line pencils (Fig. 2). In order

to get the slopes� of the lines of each pencil, the analysis has shown
that the variations of the imaginary part of the poles, depending upon
the order or upon the index, is quasi-quadratic. Thus, the director
coefficients of the straight lines vary quasi-linearly. The pencils are
easily built from the two crossing points and from the variation of
the slopes� in parameterp (order or index) as� = ap+ b. For odd
orders (Fig. 3), these three mathematical curiosities are also found.
Crossing pencil points and director coefficients are shown in Table I.

Remark 2: From a close inspection of Fig. 1, it can be seen that
the optimal poles are not exactly superposed to the pencils’ crossing
points, nevertheless, these intersections will be used as starting poles
for the optimization process.

IV. RESULTS

Before describing the whole optimization process, the first step
will be an evaluation of the quality of the proposed starting poles.
This set, merely obtained as line intersections is associated with
the optimal constrained residuesr = M(f   + ���). In Fig. 4 it is
seen that the new approximate time delay model (order 11), directly
obtained from the line pencils’ intersections (without optimization)
is better than the same order Pad´e approximation and very close to
the optimal solution. In Fig. 5 it is seen that for odd or even orders
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Fig. 4. Order–11 step responses.

Fig. 5. L
2-errors comparison.

ranging from 2 to 30, the proposed starting solution is more accurate
than the Pad́e approximation. Beyond order 12, the Padé polynomial
quotient is of course no longer available. For these higher orders,
exponential models arising from the Padé development techniques
using state–space representations and reduction methods could be
used (see [9] and [10]). They have not been implemented here for
comparison purposes, thus, in Fig. 5 the Padé error is not drawn
beyond order 12.

The whole optimization process has also been fully implemented
and tested in a standard numerical environment, in respect with the
IEEE 484 floating point numbers representation (Matlab). It can be

seen (Appendix and Fig. 7) that managing the possible instability
and monitoring the decrease of the criterion are sufficient to quickly
yield high-quality solutions.

Higher order models up to 200 (Fig. 6) can be obtained without
software numerical complaint. Beyond that order, the matrix	
becomes ill conditioned and inversion is inaccurate. It should be noted
that, for a similar order, the orthogonalization process complains for
a division by zero.

With this really compact algorithm, Fig. 7 shows that two or three
iterations are enough for drastically reducing the quadratic error.
In Fig. 5 it can be seen that the recommended starting poles are
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Fig. 6. Order-200 stair case response.

Fig. 7. Criteria reduction factor.

quasi-optimal. However, the exact optimal pole mapping is given in
Fig. 8.

V. CONCLUSION

For engineering purposes one looked for a convenient procedure to
get an accurate rational model of the pure time delay (orders 2� � �10).
The usual Pad́e approximation, thought as a starting point for the
L
2 Gauss–Newton optimization procedure is not successful. It has

been seen that for the delayed step during the optimization process,

the migration of the poles from the Padé position toward the optimal
placement, leads some of them to go through double poles, resulting
in serious difficulties.

The burden of managing the poles merging and separation has
been avoided with the proposed starting point. Furthermore, it has
been shown that, without any optimization iteration, this starting
pole map is better than the Padé approximation, largely beyond all
usual orders. The initial poles, easily located by simple intersections
of two line pencils, are so close to the optimal solution that the
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Fig. 8. Optimal poles position.

algorithm immediately locks to the efficient Gauss–Newton iterations.
The optimal residues are computed by a compact procedure.

The best (L2-sense) rational model is obtained after two or
three iterations. For numerical robustness validation in the Matlab
environment extremely high (up to order 200) optimal time-delay
models have been built with the proposed procedure.

The constraining ability has been used here to yield a low-pass
filter model. Extra equations could be set to exactly preserve values
of the Fourier transform at some prescribed frequencies.

APPENDIX

A. Functions

L2-Optimal Residues (Polesbi, EnergyE, Constraint Matrices
L; y):

[ ; ; ; ; ] . . .

= ( ; ; ; );

= ( );

= � ( ; );

= ( ):=( + ’);

[ ; ] = ( ( ));

= ( ( ’));

= ’� ( � � ’) � ( � � � );

= � ( + );

= ( � ’�( � ));

Gauss–Newton Corrective Term:

[ ; ] . . .

= ( ; ; ; ; ; ; )

= ( );

%

= : � ;

= [ ; � � ( ( )) . . .

� ( ) � ’ ; � ( ) � : . . .

� ( ( ))];

= ( ( ’));

%

= [ ; ( ): � ];

= [ ( ( : ; : )’) � ; . . .

( ( : ; + : � )’) � ];

= � ;

= ’� ( � � ’) . . .

�( + � � );

= � (� + );

Stair Case Laplace Transform and Its 1st Derivative:

[ ; ] = ( );

= (� );

= ( � ):= ;

= ( : � � ( � )):= :^ ;

B. Main Script: Iterative Procedure

%

%( ) :

= (‘ ( < < )? =’)

= ( ); %

= �
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= : ; %

=

= ;% <

= : ;
� ( ( ) > ) (‘ !!!’); ;

% ;

= ;

= == ;

[ ; ; ; ; ] = ( ; : ; ( ; ); );
�

[ ; ] = ( ; ; ; ; ;

[ ( ; ); ( ; )]; );

= ( + : � );

= + � ;

= ;
� ( ( ) > )

(‘ � ’)

= : � ; = + ;

; %

[ ; ; ; ; ]

= L2OptRes(b1; 1:0; ones(1; n); 1);

%

>=

= : � ; = + ;

[ ; ; ; ; ]

= L2OptRes(b1; 1:0; ones(1; n); 1);

; %

= ;

= ;

= ( );

(‘ = % n %: n

= % n ’ ; ; = ; );

% ?

= + ;

= ( < ) j ( >= );

%

= : : : ;

= ( ’) � (� � );

( ; ( )):
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A System Theoretic Approach to the Stability
of PassivelyQ-Switched Lasers

S. M. Shahruz and T. A. Mahavaraha

Abstract—The rate equations of passivelyQQQ-switched lasers are consid-
ered. These equations represent the dynamics of the photon number in the
laser cavity, the population inversion of the laser, and the ground-state
population of the saturable absorber when excited by an input (pumping
rate). In this note it is shown that for bounded inputs the laser output is
bounded. Furthermore, it is shown that when the input is switched off,
the laser output converges to zero asymptotically. These stability results
show that passivelyQQQ-switched lasers can operate safely.

Index Terms—Lyapunov technique, passivelyQQQ-switched lasers, rate
equations, stability.

I. INTRODUCTION

Q-switched lasers generate intense (giant) pulses of short duration
of a few tens of nanoseconds. The mechanism for generating such
pulses is to initially keep the laser cavity from oscillating by increas-
ing the cavity losses to high values or removing the cavity feedback,
while letting the laser pumping build up a large population inversion.
Then, after a large population inversion is accumulated, the cavity
feedback is restored by means of some rapid modulation. This process
results in an intense pulse of short duration. Intense pulses generated
by Q-switched lasers are important in many applications, such as
laser radars, tunable laser radars, cutting, drilling, and welding, and
scientific experiments in nonlinear optics. Due to their importance,
Q-switched lasers have been studied by researchers extensively (see,
e.g., [1]–[5] and the references therein). There are different types
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