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Abstract—In this paper, we focus on blind estimation of the chip duration
of time-hopping signals by introducing a cost function based on Time Of
Arrival (ToA) folding over multiple observation sets. An optimization
algorithm that takes advantage of the highly oscillatory behavior in
the nearby of the global minimum is proposed and a performance
bound for the chip time estimate is derived. The pertinence of our
approach is shown through numerical results, considering alternative
methods like periodogram and separable least squares line search. The
proposed technique enables a good tradeoff between statistical accuracy
and computational complexity.

Index Terms—Pulse Train Analysis, Time-Hopping, Impulse Radio, Blind
estimation, Time-of-arrival, Period estimation, Chip duration, Multi-
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I. INTRODUCTION

The issue of period estimation from a series of incomplete and
noisy discrete events, arising from a periodical process, f nds many
applications in various domains including radar [1], communications
[2], astrophysics [3] and neurology [4]. In the feld of digital
communications, this problem can arise when performing bitstream
synchronization through zero-crossing analysis from the received
Pulse Amplitude Modulated (PAM) signal [2]. Another example
concerns blind estimation of the hop rate for Frequency-Hopping
Spread Spectrum (FH-SS) signals [5], where the frequency band used
by the transmitter is unknown.

Blind estimation is of central importance for passive listening,
which is a main stage in Electronic Warfare and Signals Intelligence
(SIGINT) [6], [7]. In this context, some technical characteristics
should be estimated so as to be able to recognize the type of
transmitter and locate it or extract the underlying message, with few
or no prior knowledge. In this paper, we focus on the particular case
where the transmitted signal is a non-periodic pulse train in which
the time lapse between the beginning instants of two consecutive
pulses is controlled by a pseudonoise code generator (time-hopping).
In particular, the problem of blind estimation of the chip interval will
be considered, which appears to be a key parameter of the system as it
directly inf uences multiple-access performances, spectral properties
or probability of intercept.

Over the past two decades, many results have been reported
about the general problem of period extraction from sparse, timing
measurements. Various contributions yield the period estimate from
the arrival times by pursuing one of the following approaches:
histogramming [11], Kalman f Itering [12], [13], Euclidean algorithm
[14], periodogram [15], [16] or function optimization [3], [5], [17],
[18]. The present work is mainly inspired by a recent paper of
Sidiropoulos et al. [5] in which the period estimation is achieved
owing to an objective function based on the round operator. An
interesting result pointed out by the authors is the performance
increase of the line search procedure that can result from a pertinent

choice of time differences. The basic approach (SLS2-ADJ) uses
adjacent differences whereas the more sophisticated one (SLS2-ALL)
operates over all pairwise differences. The question of which time
differences to exploit with the SLS2 approach has been further
investigated in [16].

The chip time estimator that will be developed in this paper
shares two similarities with the SLS2 approach. First, our objective
function also rely on the round operator, which has proved to be
very effective in previous studies, and second, various arrival time
differences are associated for function evaluation. Our work clearly
distinguishes from the contribution of Sidiropoulos though, as the
cost function takes a very different analytical form by using a
“puncturing” principle to compute the total sum of observed data.
As a result, we get a multimodal characteristic that brings useful
information about the underlying received pulse train and enables
an original optimization algorithm: the global minimizer is found
through alternating a diversif cation strategy based on deterministic
hops and Golden Section Search (GSS) for local exploration. Also,
we propose a combining process of the local minima discovered
for different record lengths to enhance the performance. Despite the
increased computational cost, the complexity is still attractive for
practical implementations as no trigonometric function is required. A
few numerical results will be proposed to show the good statistical
performances, considering SLS2-ADJ, SLS2-ALL and periodogram
as alternate methods.

The paper is organized as follows. In section II, the statistical signal
model is def ned and a novel round operator-based objective function
is introduced. A minimization process is then developed in section III
and an approximate performance bound is stated. Finally, before some
concluding remarks, the statistical performances of the proposed
approach will be examined through Monte-Carlo simulations.

II. PROBLEM FORMULATION
A. Signal Model

As pointed out by Clarkson in a recent paper [16], the model
which is mostly taken into consideration for a series of sparse and
noisy discrete events, arising from a periodical process, relies on
a set of random variables {y;i}, (1,2, ..ny » being expressed as
yi = kiT + @+ ni, where T > 0 is the unknown period, ¢
stands for the initial phase refecting the transmitter-receiver time
offset, indices ki N specify the events that have been observed,
and the elements n; characterize the measurement noise, here being
considered as identically distributed, zero-mean Gaussian random
variables with standard deviation 0y,. The present paper focuses on the
particular case where the received signal at the input of the detection
stage has a time-hopping spread spectrum format [8]. Period T then
corresponds to the so-called chip time T¢ and the coeff cients k;
are described through the generic model ki = iN¢ + ¢, where
G are the pseudo-random code elements taking integer values in
[0, Nc = 1], N¢ being the number of time delay bins per frame.
A long pseudonoise code is considered so that no code repetition
occurs over the recorded signal. Our aim is to recover T¢ once



pulses ToA have been collected. In a blind approach, thevahrri multidimensional approach will be developed to deal witmgndata
times can be estimated by energy measurements and thriegholdets of various dimensions.

[19], which allows sub-Nyquist sampling. As a result, a seT@As Now, let us describe our search scheme, considering.-a
Y = {yi}i=1,... . Which conform to the above model can bedimensional vector of adjacent observationsTo launch the pro-
considered to develop our chip duration estimator. We motst that cedure, it should be assumed first that a confidence intdryals
this model does not completely reflect the uncertaintiesltiag from  known for an initial chip time estimat@c/, as a result of a pre-
ToA detection process : some false alarms can occur due twumk processing of the time data with a coarse estimation me#hadugh
transmitter parameters and propagation conditions (lvackgl noise estimate of the cost function pseudo-frequency is alszoitredl,UNhich
and multipath). So, ou'tllers.have later to be incorporatedhie .5n pe computed utilizing relatioféo) _ an/ (TC,) . where the
observed data s€Y to investigate the robustness of the proposed ) . . n

algorithms to such perturbations. By denotifgf }i—1,... .o the set apprommqte val.ug. of th? frarp,e time ¥ = (1/n) > ;_, ti. For

of outlying events, following a uniform distribution ovene interval €Xample, if the initial estimaté’. results from the SLS2-ADJ algo-
[y1, ], the data set from which the chip time must be extracted wiiithm Proposed by Sidiropoulas al., Ir, = [0.98 x T, 1.02 x T¢]

then take the formy = {y:}ie1.... w—no U {y%}i1... no. Missing can be ”obtalned for our refining methpd to apply, wﬁh? 40
observations can be similarly considered. and a jitter smaller tharB0%. We define t_he percent Jlt_ter as
(304 /T¢) % 100 to reflect the measurement noise corresponding to the
ToA model defined in section Il.A. The oscillation pseudeefuency
depends upon the number of observations taken into acddente,

As shown in a few earlier studies [3], [5], [17], the probleh oprocessing many data sets of different lengthswill lead to various
period estimation can be formulated as the minimization @bst groups of local minima “matching only” in the nearby ®f. The
function relying on ToA folding through quantization optoas. In  proposed algorithm, denoted as Multiple Data Sets - Adje@dBS-
this way, knowledge of coefficients; is not necessary and, if TOA ADJ), is now proposed by mixing various minima positionsuitsg
differences are considered, the effect of time offset isviglated. from the processing of multiple data sets.

Let t**), k = 1,2,..,K be a series of observation sets with
different increasing lengths defined by = [n1, no, ..., nx]. Each

A novel cost function is proposed here, whose highly odoitla  of these data sets leads to a grauy’ of local minima owing to an
behavior results from a mixing of partial functions opergtion ijterative process (Multi-Hop/local GSS), that will be desed later
punctured observation sets. In order to eliminate the phese in this section. A vector, defined as the increasingly rearranged
¢, an adjacent pair differencing as proposed by Sidiropoleus yersion of the combined vectar = U:—l v®) ) is then created.
al. [5], is processed. Hence, a new'set of Observ"f‘t'mwt_h Roughly speaking, the estimation will be based on evalgatire
bi = Yiy1 — Y = (Ne +Aci) Te + 65, i € {1, 2, .., n' — 1}, 18 dispersion of eacliX consecutive terms from, considering that the
obtained. HereAc; = cit1 — ¢ and d; = Mit+1 = - '_I'h(_e _Iaf[ter minimum spread corresponds to the maximal matching in tesfns
term repr2esents a correlated random. varllable .(r.v.) wisitridution local minima placement. An example is given in figure 1 (b).

N (0’ 20")' The proposed cost function is defined from the set of An essential step of the algorithm is the choicenofThe simplest

time datat = {ti}ie{ly 2,..,n} as caseK = 2 is considered now for the purpose of exemplification. In
~ 1,05 —t 1,5 -t this case, two pseudo-periods of oscillatidnand 02 are obtained,

depending om; andn., respectively. It is considered; < ns so
" ) ) ) naturally §, > -, and, in the noise-free case, the elements 0t
where S = > ¢, 1, is a nth dimensional vector of ones, 5n44® can be expressed a8 ~ T, + pf; andvl” ~ T, + 6,
, : )
® denotes the Kronecker product = n' — 1 and [|.[|, stands regpectively, wherép,r) € Z2. In order to evaluate the matching be-
for the ¢, matrix norm. Due to the operations involved, th§een the two sets of minima, the following distance is coteguor
variation of the cost function becomes very fast in the nessn o,.p entryo”, a, = min{|ps — 76|, r € {ln, L + 1, ..., I2}}
of T.. This characteristic translates into pseudo-periodicstilo ! (T.—Min(+(2)) ’ (ma>7<(v<2))77Tc)7
lations. In the jitter free case, (1) is a sum of periodicaidiions Wherel = % andly = - For

hm (z) = [(S — Acm) x — round((S — Acm) )| of respective fre- close values:, andn., the matching between™ andv(® is perfect
quencies(S — Acm), wherez = Tc/T andm € {1, 2, .., n}.  for (p,r) = (0,0) (I = T.), with a slow but constant variation,
Cost function's oscillating property will be exploited imet next \hereas if the difference between andns is increased, the distance
sections for a restricted nearby of = 1, where (z + 1/z) = 1., exhibits some oscillations with possible small magnitudes
Henceh,, (1/x) has also an approximate oscillating behavior withme values far fromZ.. This introductory example reveals that a
the same frequency ds. (z). As Acy, is a symetrical r.v., witt)  |arge difference between consecutive valugsis likely to lead to a
mean, it can be shown that the local minima of the cost functigyerformance degradation if the chip time estimate reliesieasuring
f(1/z) will be located with a pseudo-frequency = nN.T.. the dispersion of values in the different groups of discedelocal
Consequently, the approximate pseudo-frequency of asioifl for  minima.
! (tT is fo ~nNc/Te. MDS-ADJ algorithm

II{. PROPOSEDMETHOD FORCHIP TIME ESTIMATION

B. A novel cost function

1)

1

02

0) Define a confidence intervd,, according to a preprocess-

A. Multiple Data Sets - Adjacent algorithm ing approach such as SDS-ADJ;

The procedure proposed here combines multiple hops (MH) con 1) Choose the length valugs:, } of the various observation
trolled by the pseudo-frequency estimate and a Golden @ecti subsetg™, £k =1,2,..., K;
Search (GSS). Owing to this limited complexity processihg, cost 2) For k = 1 compute the starting pseudofrequerﬁ;}’o) =
function envelope is precisely evaluated over the searabesphile mTf/ Tc/ 2;
avoiding the problem of staying in a particular local minimuA 3) Determine through GSS the first local minimamyo within

(1,0) _ . . 1 )
1 round(.) denotes rounding to the nearest integer Iy = [mm (Iz.), min (I.) + W]'
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Figure 1. Cost function properties: (a) Evaluation or = 1, n = 30 and N. = 20; (b) Local minima positions foff . = 1, N. = 20 and various sets of
observations having distinct dimensions.

4) Fori > 1, an interval[(Tlc’” is defined for a local search asOwing to this result, we can assess the efficiency of our estim
with respect to the number of observations.
79 _ ) o ) 7 Theorem 2: Let t be an-dimensional vector of recorded TOA
T. — U1,(i—1) + A(1,i-1)° U1,(i—1) + A(1i—1) | . . .
6fo 6fo differences. Denotin@r and Br,, the CRB of the ML estimate of
o (2) T, for ToA model, and respectively for ToA differences modak
where vy, (;_1) stands for the local minimum found atperformance ratio);, = Br/Br, can be expressed, for >> 1, as

(i — 1)th step; s
5) A local GSS is performed and the minimizer; evalu- N ~ n ) (4)
ations are necessary to determine the localwittih” is 12(n —1)2
] ?tsre? for the next_lteratlc_m; tated dingfth? — Proof: First, we know from [14] that the CRB regarding the
) € frequency esFlmate is updated accordingf —  period estimation for the ToA statistical model can be esped as
1/ (vl’i 7'[)1’(2;1)), 2 2 ’_2 I’ 2 n’ 2
7)  Steps 2, 3 and 4 are repeated until the upper bound of tHe = E (BT)1 whereBr = n'o; /(0 320, kj — ( j=1 kj)
search interlval(Tc is reached; ' ' reflects the randomness of the coefficiehfs(n’ being the number
8) A vectorvV = [v11,v12,..,v1,z,] is obtained; repeat of time observations). If a set of time differencess considered
steps 2 - 7 fork € {2, ..., K}; _ to eliminate the influence of the phase term, the bound to take
9)  Formw as the increasingly rearranged version wf= into account isBr, = 2Br [14]. Hence, the performance ratip.
Up—s (v(k)) and computes; = (1/K) Z;‘S((uj —  becomes
m;)?, where m; = (1/K)Y "% u;, for i € T =

{1,,2, ..., card(u) — K};
10) Estimate the chip time ad.= argmin |vk,; — mi,,|,

B
v, €v () nL =E

Tq

el e [(hm)]

(n' —1)* N2

wherei,, = a.l'gi?[éiél (s4).
As can be seen, the MH-GSS processing is of central imp@tangith k; = iN. + c¢;, i € {1, 2, ..., n'}, according to the time-
in this generalized estimation algorithm. It must be emjdeasthat hopping format of the signal. For the first term in the numarat
the computation of the standard deviationsfor each K successive yye getE Z;L;l kf = N? Z;lel i+ NP+ y§1)7 where
elements ofu is achieved to find the nearby @f. only, the final . & w9 .
estimate being derived from the larger observatiortS&t, relatively %c~ = E 2j=ijei| andye’ = E [ZJ:I CJ} - As random vari-
to thei,,,-th group of candidate values, as it provides the best acyuraableszy;1 jcj andzgil c; become normal a8’ increases (central
about the global minimum location. limit theorem), this first term finally takes the following ession

Theorem 1: (Loose performance bound for chip time eevaluationg, [Zfil ka} — N2 (n/s 4302 + 3n/) /34N, (n/z +n - 1) /2.

are necessary to determine the localstimation)tt&t be the longest ! , 2
set of ToA differences for MDS-ADJ. Then, the obtained eatimi,  For the second term in the numerator we Obﬁi{‘( i1 kj) J =

verifies the following inequality, forx > 7/2 : N2n2 (n + 1)2 /A + 2Nen' (n/ + 1)x£2)/2 + y§2), wherez® —
2 , , 2
. ((Tc —TC>2) S B, = 207 . @) E [Z;‘zlcj} andy® = E {(Zg‘:lcj) ] For large values of
(nx Ne)

’ 2
where(x) denotes the expectation of n', random variable{ >-"_, cj) has a non-centray? distribution,
Proof: See Appendix A. ' m With one degree of freedom, whose mean is significantly targe
We derive also in the next theorem a closed-form expressidheo than its variance; hencey” ~ (x£2)> . Consequently, we get

ratio between our loose performance bouBg and the Cramér- "o 2] N2 (0 1 an + an’) /4 — Non® /2
Rao Bound (CRB)Br, coresponding to TOA differences model. ( =1 j) /n' = NE(n +4n” +4n') /4 — Nen /2
n' /4. Assumingn’ > 1 concludes the proof.



B. Complexity and SLS2-ALL. For the MH-GSS search procedure we used in

For a given lengtm of the input sett, each evaluation of (1) has simulatiqne :.5' 1975 accuracy. It should be mentioned that, due to
O (n) complexity. If a confidence interval is considered, with althi °Pservation diversity enabled by MDS-ADJ, a careful desifjn =
At = 4T, ~v < 1, then, the numbekr of local minima to be searched 171+ 725 -+, nk } is required to get the best results with this method.
is f,At, yielding I ~ |ynN.|. An average number of iterations I "€ Iarg/e_st observation set was selected sonthat= n = n’ —1,
iss is considered [20licss = 1+[(In(L) — In(¢)) /In(7)], where wheren’ is the length of the unique input set of ToA dlfferences
L = = is the average width of the search interval (the width = {t1, t2, ..., tn} used by other methods. For MDS-ADJ algorithm
decreases at each iteration due to frequeficyincrease)e is the ™ = 12klk € {10, 11, ..., 14}} U {30, 31, ..., 39} and a search

desired accuracy and stands for the golden rafioHence,l - icss Nterval Ir. = [0.98, 1.02] were used. Figure 2 (a) gives the
of O (n) complexity function evaluations are requireNow, the statistical performance as a function of jitter for the fiansidered

complexity of MDS-ADJ is addressed. Considering a set ogfies Methods. As pointed out in previous papers [3], [16], we daseove
n = {n1, na, ., nx b by ~ |yniN.| minima are to be searcheg that periodogram and SLS2-ALL are optimal, as their erreezh the

for eachny, k € {1, 2, ..., K}. Hence,Zfﬂ I - Zggs evaluations CRB Br. Despite MDS-ADJ_ non-optimality, this approach achieves
of the cost function are needed to determine the elementa;of VETY 900d performance and it can be observed that the reselton-

chgs = 1+ [(In(Ly,) — In(e)) /In(7)] represents the average numbeFiStem with the appro.ximate. bpund stated in theorem' 1. oy
of iterations corresponding ta; and Ly = —<—. One must take the bias, MDS-ADJ yields similar performance to periodogrand

SLS2-ALL at low jitter. A key feature of our approach is to provide a
tradeoff between statistical performances and complefitput this
latter aspect, MDS-ADJ requires less computations than2SAIS
which relies also on theound operator. For the case considered in
this section f = 40 observations), a total number 0f04/7, = 800
evaluations of complexityO (n2) are requested for SLS2-ALL
whereas an average number 280 operations of complexity (7),

1IV. NUMERICAL RESULTS for eachi € {2k|k € {10, 11, ..., 14}} U {30, 31, ..., 39} are

We now study the performance of MDS-ADJ chip time estimato'PVOlved for MDS-ADJ; 351 supplementary operations are needed

as a function of the measurement noise level and in presefhcem our algorithm to get the means; and standard deviations;

missing pulses or outliers. A few alternate estimation ro@shwill .c_)l'he perlodggram '_S cpmputed BO.O points over/r,, each one
. ; ) with complexity O (n); this approach involves lower complexity than
be considered for comparison purposes :

i ) i i i ~ SLS2-ALL using trigonometric functions instead.
« Periodogram, which yields a ML period estimate for a given |, order to reflect more realistically the propagation creinn

record lengthn [14], was first proposed by Fogel and Gavishncertainties, missing observations and outliers weresidered in
in [15] and reconsidered in [16]. This approach requires/t Ve second set of trials, to evaluate the robustness of MDS-ADé
fine sampling of the frequency domain due to the very narmowyme simulation setup was considered with two distinctingstt

peak corresponding to the solution. first, some missing events have been inserted in the obséimed
o Separate Least Squares Line Search - Adjacent (SL.S2-ADJ),  (gatas, the positions of the missing data being modeled vigfarm
developed in [5], relies on a simpkeund operator-based cost gjstribution. By inspecting the standard deviation curves can
function using ToA differences, witlD (n) complexity. The conclude that missing observations produce a virtual asgefN,,
initial phase at the receiver side is eliminated with thee®s®  resylting in a standard deviation below the bound. Howetercurve
of a 3 dB noise amplification. leaves the estimation bound earlier, the performance of MDS
o Separate Least Squares Line Search - All (SLS2-ALL) is an  peing degraded. In a second situation, we analyzed the ai&tim
extension ofS.S2-ADJ, which exploits all the possible positive grrors in presence of erroneous datas due to false alarras), ay
differences between ToAs, with the sameund-based cost ynjform distribution has been used to generate these tiregtavit
function. The complexity isO (n*), a ML estimate being can be seen that MSE curve degrades as the rate of outlieenges,
obtained for an-length observation set [5]. the performance reduction being more pronounced when tfse no
One must take note that periodogram, SLS2-ADJ and SLS2-Allevel is low. Again, no significant effect on bias is noticéithese
are based on a line search over an interval of hypotheseh, wigsults show that the detection stage must be designedeén taréimit
performances highly depending on the sampling step. On tiieer o the false alarm rate if a MDS-ADJ estimation is achievedraféeds.
hand, our method does not depend on this parameter at alleas thFrom these numerical simulations, we remark that the pegbos
exploration of the cost function is conducted through GS8 amMDS-ADJ approach is a good alternative to reference metbkadh
successive moves. as periodogram or SLS2-ALL. Its statistical accuracy at lmw
Monte Carlo (MC) simulations have been conducted to eveluanoderate noise levels is rather close to the CRB, while &wgidoth
the performance of the various estimation algorithms. A et of search space sampling and evaluation of trigonometrictiume By
results evaluates the statistical efficiency of differestimods through diversification of the observed time data, an efficient todidean be
10000 MC runs against jitter only, with no missing data orlieut achieved between estimation errors and computational lexityp
The record lengthn’ = 40 has been considered to evaluate thélowever, a few drawbacks can be noticed : first, a restrictedch
performance. The parameters considered for the transhsigmal interval is needed to launch the MDS-ADJ algorithm, hencease
were 7. = 1 and N. = 20, the uniformly distributed code estimate has to be found first (e.g. through SLS2-ADJ, wtecjuires
elementsc; being changed for each run. The search interval waslatively few calculations); second, no solution for atimal setting
restricted to[0.55,1.95] in order to avoid ambiguitiesni7./m2, of observation lengths: is available yet; and third, MDS-ADJ is
where m1, m2 € N [16]. A sampling stepr, = 5- 107> was sensitive to outliers.
chosen to achieve the estimation using periodogram, SLIS2-A

note that for different values of we have different complexities,
hence, in the numerical results section we will present diator
the average number of evaluation for per length. Then,(egrd K
supplementary operations are necessary, wherdward Zszl Uk,
for computing the mean and standard deviation for eAchonsec-
utive elements fromu.

) ) V. CONCLUSIONS ) ] ]
The issue of blind chip time estimation of time-hopping silgn

2The golden ratio is~ = ”Tﬁ has been considered in this paper, which is directly rel&ethe
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Figure 2.  Chip time estimation errors against jitter: (aff@ent methods comparison, (b) Missing observations andQOutliers effect on MDS-ADJ
estimation

n—1
general problem of period estimation from sparse, noisyingm g, — ( 2 ) represents the total number of combinations
data. Following recent results of Sidiropouleisal., the role of the n—1 ,

round operator has been investigated to derive a period estimate.(.]ik, Jfk) Thus, P (yn_ﬂ = 6) =P (U?Zl EZ) , which can be
novel cost function has been introduced, which combinesowsr approximated as [21] ’

incomplete observation sets. The highly oscillatory béraof this

function has been examined through theoretical develosnémn

algorithm for chip time estimation taking advantage of thisperty P (ynTﬂ = 5) ~Cn-P(z=p) exp (*
has then been proposed. Thanks to the pseudo-periodienattine

cost function, which involves only basic operations, a getadistical where C,, = nKn4l’T"_ The corresponding probability density

performance is achieved at limited computational cost. édeer, function is:
compared to methods like periodogram or SLS2-ALL, no samgpli 5
~ _Cn -exp<7(ﬁfu) <1+2(n71)>>. (5)
oV 2 Uﬂ ™
We particularize now the above relation to our problem. Taleate

Is required. APPENDIX @
PROOF OFTHEOREM1
A set of n realizations{z1, z2, ..., z,} € X", where X ~ the estimation error, we express our cost function (1) asracfipar-
N (u,0?), is considered. For each;, i € {1,2, .., n}, and a tial functionsh., (t, T) = ‘(S —tm) /T — round (S—tm)/T)‘,
given valuep, three possible events can be distinguish&d: = ,, — 12 . n It'can be easily shown thatS —t,) =
{z; =B}, EF = {x; < B} and E = {z; > }. Our interest is (C - Acm)T +T = 6, whereC = nN. and T = 7,41 — 1.
to establish, for a given valug, which is the probability of event |n the nearby of7., each functionh,, equals zero atl,, =
Yno1 = B} where{y1, y2, ..., y»} is the ascending order versiony,, / (C' — Acy) & ¢ /C, Where p,, = I' — §,,. The random
of {x1, w2, ..., T, }. Here, we only take in consideration the case ofariabless,, andI" have the probability distributio/ ((), 02), where
n odd. It can be easily shown th@Ei< NEZ}N{E; NES} =2, o’ = 20,. For a given set of observatiorts, only two terms of
the sets{E;} U {E;|j €{1,2, .., n},j#i} and respectively {d,.} exhibita correlation withl" which has a constant value. Hence,
{E7} U {Ef|j €{1,2,..,n},j ;é i} contain elements that arewe can assume that each rg,, is approximately distributed as
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independent one to each other and € {1, 2, ..., n}, N (F o ) For the sake of simplicity of the presentation we denote
P(ES) = (1+erf((B—p)/(cv2))) /2 and P (E7) = V={g,; m=1,2,.. n} as the set of increasingly ordered values
(1—erf((B—p)/ (cVv2))) /2. We define, of pm. As partial functionsh,,, are convex in the nearby @f., with

the same form but differently delayed, the global minimumttus

, K cost function, corresponding to estimétg is ¢ = ¢',., . From (5),
_ > < . - . . 2, -
E=J N E7¢nS () E ; the corresponding probability density function for a sengtalization

k=1 JE€ITy JETT), can be expressed as

where, J7, and J7, have the same length(n—1)/2,

€-1)? 2(n—1)
{JkﬂJk}—Q)and{Jkqu}—{Je{12 Y| # i), FET) = U\/—ep< o2 (” - ))




Considering thatf (¢) ~ [*_ f(¢,T) f (I') dI', we then obtain the
following closed form expression:

- T 1 &€ m4+2(n-1)
1 _C"\/ T+2(n—1) ¢ zweXp< 207 27r+2(n—1)25
6

If we look at argument of the exponential in the relation ahov
¢ is a normal, unbiased variable with the approximate vadanc
o> (2 +2(n—1))/(r+2(n—1)). For large values ofn the
variance of¢ can be further approximated . As the chip time
estimate isl,. = £/C, we finally get

(1) = =
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