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Abstract—In this paper, we focus on blind estimation of the chip duration
of time-hopping signals by introducing a cost function based on Time Of
Arrival (ToA) folding over multiple observation sets. An optimization
algorithm that takes advantage of the highly oscillatory behavior in
the nearby of the global minimum is proposed and a performance
bound for the chip time estimate is derived. The pertinence of our
approach is shown through numerical results, considering alternative
methods like periodogram and separable least squares line search. The
proposed technique enables a good tradeoff between statistical accuracy
and computational complexity.
Index Terms—Pulse Train Analysis, Time-Hopping, Impulse Radio, Blind
estimation, Time-of-arrival, Period estimation, Chip duration, Multi-
modal optimization.

I. INTRODUCTION

The issue of period estimation from a series of incomplete and
noisy discrete events, arising from a periodical process, f nds many
applications in various domains including radar [1], communications
[2], astrophysics [3] and neurology [4]. In the f eld of digital
communications, this problem can arise when performing bitstream
synchronization through zero-crossing analysis from the received
Pulse Amplitude Modulated (PAM) signal [2]. Another example
concerns blind estimation of the hop rate for Frequency-Hopping
Spread Spectrum (FH-SS) signals [5], where the frequency band used
by the transmitter is unknown.

Blind estimation is of central importance for passive listening,
which is a main stage in Electronic Warfare and Signals Intelligence
(SIGINT) [6], [7]. In this context, some technical characteristics
should be estimated so as to be able to recognize the type of
transmitter and locate it or extract the underlying message, with few
or no prior knowledge. In this paper, we focus on the particular case
where the transmitted signal is a non-periodic pulse train in which
the time lapse between the beginning instants of two consecutive
pulses is controlled by a pseudonoise code generator (time-hopping).
In particular, the problem of blind estimation of the chip interval will
be considered, which appears to be a key parameter of the system as it
directly inf uences multiple-access performances, spectral properties
or probability of intercept.

Over the past two decades, many results have been reported
about the general problem of period extraction from sparse, timing
measurements. Various contributions yield the period estimate from
the arrival times by pursuing one of the following approaches:
histogramming [11], Kalman f ltering [12], [13], Euclidean algorithm
[14], periodogram [15], [16] or function optimization [3], [5], [17],
[18]. The present work is mainly inspired by a recent paper of
Sidiropoulos et al. [5] in which the period estimation is achieved
owing to an objective function based on the round operator. An
interesting result pointed out by the authors is the performance
increase of the line search procedure that can result from a pertinent

choice of time differences. The basic approach (SLS2-ADJ) uses
adjacent differences whereas the more sophisticated one (SLS2-ALL)
operates over all pairwise differences. The question of which time
differences to exploit with the SLS2 approach has been further
investigated in [16].

The chip time estimator that will be developed in this paper
shares two similarities with the SLS2 approach. First, our objective
function also rely on the round operator, which has proved to be
very effective in previous studies, and second, various arrival time
differences are associated for function evaluation. Our work clearly
distinguishes from the contribution of Sidiropoulos though, as the
cost function takes a very different analytical form by using a
“puncturing” principle to compute the total sum of observed data.
As a result, we get a multimodal characteristic that brings useful
information about the underlying received pulse train and enables
an original optimization algorithm: the global minimizer is found
through alternating a diversif cation strategy based on deterministic
hops and Golden Section Search (GSS) for local exploration. Also,
we propose a combining process of the local minima discovered
for different record lengths to enhance the performance. Despite the
increased computational cost, the complexity is still attractive for
practical implementations as no trigonometric function is required. A
few numerical results will be proposed to show the good statistical
performances, considering SLS2-ADJ, SLS2-ALL and periodogram
as alternate methods.

The paper is organized as follows. In section II, the statistical signal
model is def ned and a novel round operator-based objective function
is introduced. A minimization process is then developed in section III
and an approximate performance bound is stated. Finally, before some
concluding remarks, the statistical performances of the proposed
approach will be examined through Monte-Carlo simulations.

II. PROBLEM FORMULATION

A. Signal Model
As pointed out by Clarkson in a recent paper [16], the model

which is mostly taken into consideration for a series of sparse and
noisy discrete events, arising from a periodical process, relies on
a set of random variables { yi } i 	 { 1, 2, . . . , n ′ } , being expressed as
yi = ki T + φ + ηi , where T > 0 is the unknown period, φ
stands for the initial phase ref ecting the transmitter-receiver time
offset, indices ki 	 N∗ specify the events that have been observed,
and the elements ηi characterize the measurement noise, here being
considered as identically distributed, zero-mean Gaussian random
variables with standard deviation ση . The present paper focuses on the
particular case where the received signal at the input of the detection
stage has a time-hopping spread spectrum format [8]. Period T then
corresponds to the so-called chip time Tc and the coeff cients ki

are described through the generic model ki = iNc + ci , where
ci are the pseudo-random code elements taking integer values in
[0, Nc − 1], Nc being the number of time delay bins per frame.
A long pseudonoise code is considered so that no code repetition
occurs over the recorded signal. Our aim is to recover Tc once
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pulses ToA have been collected. In a blind approach, the arrival
times can be estimated by energy measurements and thresholding
[19], which allows sub-Nyquist sampling. As a result, a set of ToAs
Y = {yi}i=1,...,n′ which conform to the above model can be
considered to develop our chip duration estimator. We must note that
this model does not completely reflect the uncertainties resulting from
ToA detection process : some false alarms can occur due to unknown
transmitter parameters and propagation conditions (background noise
and multipath). So, outliers have later to be incorporated in the
observed data setY to investigate the robustness of the proposed
algorithms to such perturbations. By denoting{yo

i }i=1,...,no the set
of outlying events, following a uniform distribution over the interval
[y1, yn], the data set from which the chip time must be extracted will
then take the formY = {yi}i=1,...,n′−no ∪ {yo

i }i=1,...,no . Missing
observations can be similarly considered.

B. A novel cost function

As shown in a few earlier studies [3], [5], [17], the problem of
period estimation can be formulated as the minimization of acost
function relying on ToA folding through quantization operations. In
this way, knowledge of coefficientski is not necessary and, if ToA
differences are considered, the effect of time offset is eliminated.

A novel cost function is proposed here, whose highly oscillatory
behavior results from a mixing of partial functions operating on
punctured observation sets. In order to eliminate the phaseterm
φ, an adjacent pair differencing as proposed by Sidiropolouset
al. [5], is processed. Hence, a new set of observationst, with
ti = yi+1 − yi = (Nc +∆ci)Tc + δi, i ∈ {1, 2, ..., n′ − 1}, is
obtained. Here∆ci = ci+1 − ci and δi = ηi+1 − ηi. The latter
term represents a correlated random variable (r.v.) with distribution
N

(
0, 2σ2

η

)
. The proposed cost function is defined from the set of

time datat = {ti}i∈{1, 2, ..., n} as1

f
(
t, T̃

)
=

∥∥∥∥
1n ⊗ S − t

T̃
− round

(
1n ⊗ S − t

T̃

)∥∥∥∥
1

. (1)

where S =
∑n

i=1 ti, 1n is a nth dimensional vector of ones,
⊗ denotes the Kronecker product,n = n′ − 1 and ‖.‖1 stands
for the ℓ1 matrix norm. Due to the operations involved, the
variation of the cost function becomes very fast in the nearness
of Tc. This characteristic translates into pseudo-periodical oscil-
lations. In the jitter free case, (1) is a sum of periodical functions
hm (x) = |(S −∆cm)x− round((S −∆cm) x)| of respective fre-
quencies(S −∆cm), where x = Tc/T̃ and m ∈ {1, 2, ..., n}.
Cost function’s oscillating property will be exploited in the next
sections for a restricted nearby ofx = 1, where (x+ 1/x) ∼= 1.
Hencehm (1/x) has also an approximate oscillating behavior with
the same frequency ashm (x). As ∆cm is a symetrical r.v., with0
mean, it can be shown that the local minima of the cost function
f (1/x) will be located with a pseudo-frequencyS ∼= nNcTc.
Consequently, the approximate pseudo-frequency of oscillation for
f
(
t, T̃

)
is fo ≃ nNc/Tc.

III. PROPOSEDMETHOD FORCHIP TIME ESTIMATION

A. Multiple Data Sets - Adjacent algorithm

The procedure proposed here combines multiple hops (MH) con-
trolled by the pseudo-frequency estimate and a Golden Section
Search (GSS). Owing to this limited complexity processing,the cost
function envelope is precisely evaluated over the search space while
avoiding the problem of staying in a particular local minimum. A

1 round(.) denotes rounding to the nearest integer

multidimensional approach will be developed to deal with many data
sets of various dimensions.

Now, let us describe our search scheme, considering an-
dimensional vector of adjacent observationst. To launch the pro-
cedure, it should be assumed first that a confidence intervalITc is
known for an initial chip time estimatêT

′

c , as a result of a pre-
processing of the time data with a coarse estimation method.A rough
estimate of the cost function pseudo-frequency is also required, which

can be computed utilizing relation̂f (0)
o = nT̂f/

(
T̂

′

c

)2

, where the

approximate value of the frame time iŝTf = (1/n)
∑n

i=1 ti. For
example, if the initial estimatêT

′

c results from the SLS2-ADJ algo-
rithm proposed by Sidiropouloset al., ITc = [0.98× Tc, 1.02× Tc]
can be obtained for our refining method to apply, withn = 40
and a jitter smaller than30%. We define the percent jitter as
(3ση/Tc)×100 to reflect the measurement noise corresponding to the
ToA model defined in section II.A. The oscillation pseudo-frequency
depends upon the number of observations taken into account.Hence,
processing many data sets of different lengthsnk will lead to various
groups of local minima “matching only” in the nearby ofTc. The
proposed algorithm, denoted as Multiple Data Sets - Adjacent (MDS-
ADJ), is now proposed by mixing various minima positions resulting
from the processing of multiple data sets.

Let t
(k), k = 1, 2, ..., K be a series of observation sets with

different increasing lengths defined byn = [n1, n2, ..., nK ]. Each
of these data sets leads to a groupv

(k) of local minima owing to an
iterative process (Multi-Hop/local GSS), that will be described later
in this section. A vectoru, defined as the increasingly rearranged
version of the combined vectorv =

⋃K

k=1

(
v
(k)

)
, is then created.

Roughly speaking, the estimation will be based on evaluating the
dispersion of eachK consecutive terms fromu, considering that the
minimum spread corresponds to the maximal matching in termsof
local minima placement. An example is given in figure 1 (b).

An essential step of the algorithm is the choice ofn. The simplest
caseK = 2 is considered now for the purpose of exemplification. In
this case, two pseudo-periods of oscillationθ1 and θ2 are obtained,
depending onn1 andn2, respectively. It is consideredn1 < n2 so
naturally θ1 > θ2, and, in the noise-free case, the elements ofv

(1)

andv(2) can be expressed asv(p)1 ≃ Tc + pθ1 andv(r)2 ≃ Tc + rθ2,
respectively, where(p, r) ∈ Z

2. In order to evaluate the matching be-
tween the two sets of minima, the following distance is computed for
each entryv(p)1 , ap = min{|pθ1 − rθ2| , r ∈ {l1, l1 + 1, ..., l2}},

where l1 =

⌈
(Tc−min(v(2)))

θ2

⌉
and l2 =

⌊
(max(v(2))−Tc)

θ2

⌋
. For

close valuesn1 andn2, the matching betweenv(1) andv(2) is perfect
for (p, r) = (0, 0) (T̃ = Tc), with a slow but constant variation,
whereas if the difference betweenn1 andn2 is increased, the distance
ap exhibits some oscillations with possible small magnitudesfor
time values far fromTc. This introductory example reveals that a
large difference between consecutive valuesnk is likely to lead to a
performance degradation if the chip time estimate relies onmeasuring
the dispersion of values in the different groups of discovered local
minima.

MDS-ADJ algorithm

0) Define a confidence intervalITc according to a preprocess-
ing approach such as SDS-ADJ;

1) Choose the length values{nk} of the various observation
subsetst(k), k = 1, 2, ..., K;

2) For k = 1 compute the starting pseudofrequencyf̂
(1,0)
o =

n1T̂f/
(
T̂

′

c

)2

;

3) Determine through GSS the first local minimumv1,0 within
I
(1,0)
Tc

=
[
min (ITc ) , min (ITc) +

1

f̂
(1,0)
o

]
;
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Figure 1. Cost function properties: (a) Evaluation forTc = 1, n = 30 andNc = 20; (b) Local minima positions forTc = 1, Nc = 20 and various sets of
observations having distinct dimensions.

4) For i > 1, an intervalI(1,i)Tc
is defined for a local search as

I
(1,i)
Tc

=

[
v1,(i−1) +

5

6f̂
(1,i−1)
o

, v1,(i−1) +
7

6f̂
(1,i−1)
o

]
,

(2)
where v1,(i−1) stands for the local minimum found at
(i− 1)th step;

5) A local GSS is performed and the minimizerv1,i evalu-
ations are necessary to determine the localwithinI

(1,i)
Tc

is
stored for the next iteration;

6) The frequency estimate is updated according tof̂
(1,i)
o =

1/
(
v1,i − v1,(i−1)

)
;

7) Steps 2, 3 and 4 are repeated until the upper bound of the
search intervalITc is reached;

8) A vector v(1) = [v1,1, v1,2, ..., v1,L1 ] is obtained; repeat
steps 2 - 7 fork ∈ {2, ..., K};

9) Form u as the increasingly rearranged version ofv =⋃K

k=1

(
v
(k)

)
and computesi = (1/K)

∑i+K

j=i (uj −
mi)

2, where mi = (1/K)
∑i+K

j=i
uj , for i ∈ I =

{1, , 2, ..., card(u)−K};
10) Estimate the chip time aŝTc= argmin

vK,i∈v
(K)

|vK,i −mim |,

whereim = argmin
i∈I

(si).

As can be seen, the MH-GSS processing is of central importance
in this generalized estimation algorithm. It must be emphasized that
the computation of the standard deviationssi for eachK successive
elements ofu is achieved to find the nearby ofTc only, the final
estimate being derived from the larger observation sett

(K), relatively
to theim-th group of candidate values, as it provides the best accuracy
about the global minimum location.

Theorem 1: (Loose performance bound for chip time eevaluations
are necessary to determine the localstimation) Lett

(K) be the longest
set of ToA differences for MDS-ADJ. Then, the obtained estimateT̂c

verifies the following inequality, fornK ≫ π/2 :

E

((
T̂c − Tc

)2
)

> BL
∼= 2σ2

η

(nKNc)
2 . (3)

whereE(×) denotes the expectation of×.
Proof: See Appendix A.

We derive also in the next theorem a closed-form expression of the
ratio between our loose performance boundBL and the Cramér-
Rao Bound (CRB)BTd

coresponding to TOA differences model.

Owing to this result, we can assess the efficiency of our estimator
with respect to the number of observations.

Theorem 2: Let t be a n-dimensional vector of recorded TOA
differences. DenotingBT andBTd

, the CRB of the ML estimate of
Tc, for ToA model, and respectively for ToA differences model,the
performance ratioηL = BL/BTd

can be expressed, forn′ ≫ 1, as

ηL ≃ n′3

12 (n′ − 1)2
. (4)

Proof: First, we know from [14] that the CRB regarding the
period estimation for the ToA statistical model can be expressed as

BT = E

(
B̂T

)
, whereB̂T = n′σ2

η/

(
n′ ∑n′

j=1 k
2
j −

(∑n′

j=1 kj
)2

)

reflects the randomness of the coefficientskj (n′ being the number
of time observations). If a set of time differencest is considered
to eliminate the influence of the phase term, the bound to take
into account isB̂Td

= 2B̂T [14]. Hence, the performance ratioηL
becomes

ηL = E

[
BL

B̂Td

]
=

E

[∑n′

j=1 k
2
j

]
− 1

n′ E

[(∑n′

j=1 kj
)2

]

(n′ − 1)2 N2
c

.

with ki = iNc + ci, i ∈ {1, 2, ..., n′}, according to the time-
hopping format of the signal. For the first term in the numerator,
we get E

[∑n′

j=1 k
2
j

]
= N2

c

∑n′

j=1 j
2 + 2Ncx

(1)
c + y

(1)
c , where

x
(1)
c = E

[∑n′

j=1 jcj
]

and y
(1)
c = E

[∑n′

j=1 c
2
j

]
. As random vari-

ables
∑n′

j=1 jcj and
∑n′

j=1 c
2
j become normal asn′ increases (central

limit theorem), this first term finally takes the following expression
E

[∑n′

j=1 k
2
j

]
= N2

c

(
n′3 + 3n′2 + 3n′) /3+Nc

(
n′2 + n′ − 1

)
/2.

For the second term in the numerator we obtainE

[(∑n′

j=1 kj
)2

]
=

N2
c n

′2 (n′ + 1)
2
/4 + 2Ncn

′ (n′ + 1) x
(2)
c /2 + y

(2)
c , wherex(2)

c =

E

[∑n′

j=1 cj
]

and y
(2)
c = E

[(∑n′

j=1 cj
)2

]
. For large values of

n′, random variable
(∑n′

j=1 cj
)2

has a non-centralχ2 distribution,
with one degree of freedom, whose mean is significantly larger

than its variance; hence,y(2)
c ≃

(
x
(2)
c

)2

. Consequently, we get

E

[(∑n′

j=1 kj
)2

]
/n′ ≃ N2

c

(
n′3 + 4n′2 + 4n′) /4 − Ncn

′2/2 +

n′/4. Assumingn′ ≫ 1 concludes the proof.
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B. Complexity

For a given lengthn of the input sett, each evaluation of (1) has
O (n) complexity. If a confidence interval is considered, with a width
∆t = γTc, γ < 1, then, the numberl of local minima to be searched
is fo∆t, yielding l ≃ ⌊γnNc⌋. An average number of iterations
iGSS is considered [20],iGSS = 1+[(ln(L)− ln(ǫ)) /ln(τ )], where
L = Tc

nNc
is the average width of the search interval (the width

decreases at each iteration due to frequencyfo increase),ǫ is the
desired accuracy andτ stands for the golden ratio2. Hence,l · iGSS

of O (n) complexity function evaluations are required.Now, the
complexity of MDS-ADJ is addressed. Considering a set of lengths
n = {n1, n2, ..., nK}, lk ≃ ⌊γnkNc⌋ minima are to be searched
for eachnk, k ∈ {1, 2, ..., K}. Hence,

∑K

k=1 lk · i(k)GSS evaluations
of the cost function are needed to determine the elements ofu;
i
(k)
GSS = 1+ [(ln(Lk)− ln(ǫ)) /ln(τ )] represents the average number

of iterations corresponding tonk andLk = Tc

nkNc
. One must take

note that for different values ofk we have different complexities,
hence, in the numerical results section we will present as indicator
the average number of evaluation for per length. Then, card(u)−K
supplementary operations are necessary, where card(u) =

∑K

k=1 lk,
for computing the mean and standard deviation for eachK consec-
utive elements fromu.

IV. N UMERICAL RESULTS

We now study the performance of MDS-ADJ chip time estimator
as a function of the measurement noise level and in presence of
missing pulses or outliers. A few alternate estimation methods will
be considered for comparison purposes :

• Periodogram, which yields a ML period estimate for a given
record lengthn [14], was first proposed by Fogel and Gavish
in [15] and reconsidered in [16]. This approach requires a very
fine sampling of the frequency domain due to the very narrow
peak corresponding to the solution.

• Separate Least Squares Line Search - Adjacent (SLS2-ADJ),
developed in [5], relies on a simpleround operator-based cost
function using ToA differences, withO (n) complexity. The
initial phase at the receiver side is eliminated with the expense
of a 3 dB noise amplification.

• Separate Least Squares Line Search - All (SLS2-ALL) is an
extension ofSLS2-ADJ, which exploits all the possible positive
differences between ToAs, with the sameround-based cost
function. The complexity isO

(
n2

)
, a ML estimate being

obtained for an-length observation set [5].

One must take note that periodogram, SLS2-ADJ and SLS2-ALL
are based on a line search over an interval of hypotheses, with
performances highly depending on the sampling step. On the other
hand, our method does not depend on this parameter at all as the
exploration of the cost function is conducted through GSS and
successive moves.

Monte Carlo (MC) simulations have been conducted to evaluate
the performance of the various estimation algorithms. A first set of
results evaluates the statistical efficiency of different methods through
10000 MC runs against jitter only, with no missing data or outlier.
The record lengthn′ = 40 has been considered to evaluate the
performance. The parameters considered for the transmitted signal
were Tc = 1 and Nc = 20, the uniformly distributed code
elementsci being changed for each run. The search interval was
restricted to[0.55 , 1.95] in order to avoid ambiguitiesm1Tc/m2,
where m1, m2 ∈ N [16]. A sampling stepτs = 5 · 10−5 was
chosen to achieve the estimation using periodogram, SLS2-ADJ

2The golden ratio isτ =
1+

√
5

2

and SLS2-ALL. For the MH-GSS search procedure we used in
simulationǫ = 5 ·10−5 accuracy. It should be mentioned that, due to
observation diversity enabled by MDS-ADJ, a careful designof n =
{n1, n2, ..., nK} is required to get the best results with this method.
The largest observation set was selected so thatnK = n = n′ − 1,
wheren′ is the length of the unique input set of ToA differences
t = {t1, t2, ..., tn} used by other methods. For MDS-ADJ algorithm
n = {2k| k ∈ {10, 11, ..., 14}} ∪ {30, 31, ..., 39} and a search
interval ITc = [0.98, 1.02] were used. Figure 2 (a) gives the
statistical performance as a function of jitter for the five considered
methods. As pointed out in previous papers [5], [16], we can observe
that periodogram and SLS2-ALL are optimal, as their errors reach the
CRB BT . Despite MDS-ADJ non-optimality, this approach achieves
very good performance and it can be observed that the resultsare con-
sistent with the approximate bound stated in theorem 1. Concerning
the bias, MDS-ADJ yields similar performance to periodogram and
SLS2-ALL at low jitter.A key feature of our approach is to provide a
tradeoff between statistical performances and complexity. About this
latter aspect, MDS-ADJ requires less computations than SLS2-ALL
which relies also on theround operator. For the case considered in
this section (n = 40 observations), a total number of0.04/τs = 800
evaluations of complexityO

(
n2

)
are requested for SLS2-ALL

whereas an average number of200 operations of complexityO (i),
for each i ∈ {2k| k ∈ {10, 11, ..., 14}} ∪ {30, 31, ..., 39} are
involved for MDS-ADJ; 351 supplementary operations are needed
in our algorithm to get the meansmi and standard deviationssi
. The periodogram is computed in800 points overITc , each one
with complexityO (n); this approach involves lower complexity than
SLS2-ALL using trigonometric functions instead.

In order to reflect more realistically the propagation channel
uncertainties, missing observations and outliers were considered in
a second set of trials, to evaluate the robustness of MDS-ADJ. The
same simulation setup was considered with two distinct settings:
first, some missing events have been inserted in the observedtime
datas, the positions of the missing data being modeled via a uniform
distribution. By inspecting the standard deviation curve,we can
conclude that missing observations produce a virtual increase ofNc,
resulting in a standard deviation below the bound. However,the curve
leaves the estimation bound earlier, the performance of MDS-ADJ
being degraded. In a second situation, we analyzed the estimation
errors in presence of erroneous datas due to false alarms; again, a
uniform distribution has been used to generate these time events. It
can be seen that MSE curve degrades as the rate of outliers increases,
the performance reduction being more pronounced when the noise
level is low. Again, no significant effect on bias is noticed.These
results show that the detection stage must be designed in order to limit
the false alarm rate if a MDS-ADJ estimation is achieved afterwards.

From these numerical simulations, we remark that the proposed
MDS-ADJ approach is a good alternative to reference methodssuch
as periodogram or SLS2-ALL. Its statistical accuracy at lowto
moderate noise levels is rather close to the CRB, while avoiding both
search space sampling and evaluation of trigonometric functions. By
diversification of the observed time data, an efficient tradeoff can be
achieved between estimation errors and computational complexity.
However, a few drawbacks can be noticed : first, a restricted search
interval is needed to launch the MDS-ADJ algorithm, hence a coarse
estimate has to be found first (e.g. through SLS2-ADJ, which requires
relatively few calculations); second, no solution for an optimal setting
of observation lengthsn is available yet; and third, MDS-ADJ is
sensitive to outliers.

V. CONCLUSIONS
The issue of blind chip time estimation of time-hopping signals

has been considered in this paper, which is directly relatedto the
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Figure 2. Chip time estimation errors against jitter: (a) Different methods comparison, (b) Missing observations and (c) Outliers effect on MDS-ADJ
estimation

general problem of period estimation from sparse, noisy timing
data. Following recent results of Sidiropouloset al., the role of the
round operator has been investigated to derive a period estimate.A
novel cost function has been introduced, which combines various
incomplete observation sets. The highly oscillatory behavior of this
function has been examined through theoretical developments. An
algorithm for chip time estimation taking advantage of thisproperty
has then been proposed. Thanks to the pseudo-periodic nature of the
cost function, which involves only basic operations, a goodstatistical
performance is achieved at limited computational cost. Moreover,
compared to methods like periodogram or SLS2-ALL, no sampling
is required.

APPENDIX

PROOF OFTHEOREM1

A set of n realizations{x1, x2, ..., xn} ∈ Xn, where X ∼
N

(
µ, σ2

)
, is considered. For eachxi, i ∈ {1, 2, ..., n}, and a

given valueβ, three possible events can be distinguished:E=
i =

{xi = β}, E<
i = {xi < β} and E>

i = {xi > β}. Our interest is
to establish, for a given valueβ, which is the probability of event{
yn−1

2
= β

}
, where{y1, y2, ..., yn} is the ascending order version

of {x1, x2, ..., xn}. Here, we only take in consideration the case of
n odd. It can be easily shown that

{
E<

i ∩ E>
j

}
∩
{
E>

i ∩ E<
j

}
= ∅,

the sets{E=
i } ∪

{
E>

j | j ∈ {1, 2, ..., n} , j 6= i
}

and respectively
{E=

i } ∪
{
E<

j | j ∈ {1, 2, ..., n} , j 6= i
}

contain elements that are
independent one to each other and∀ i ∈ {1, 2, ..., n},
P
(
E<

i

)
=

(
1 + erf

(
(β − µ) /

(
σ
√
2
)))

/2 and P
(
E>

i

)
=(

1− erf
(
(β − µ) /

(
σ
√
2
)))

/2. We define,

E
′

i =
K⋃

k=1











⋂

j∈J
>
i,k

E>
j





∩






⋂

j∈J
<
i,k

E<
j










,

where, J
>
i,k and J

<
i,k have the same length(n− 1) /2,{

J
>
i,k ∩ J

<
i,k

}
= ∅ and

{
J
>
i,k ∪ J

<
i,k

}
= {j ∈ {1, 2, ..., n} | j 6= i}.

Kn =

(
n−1
2

n− 1

)
represents the total number of combinations

(
J
>
i,k, J

<
i,k

)
. Thus,P

(
yn+1

2
= β

)
= P

(⋃n

i=1 E
′

i

)
, which can be

approximated as [21]

P
(
yn+1

2
= β

)
≃ Cn · P (x = β) · exp

(
− (n− 1) (β − µ)2

πσ2

)
,

where Cn = nKn4
1−n

2 . The corresponding probability density
function is:

f (β) ≃ Cn

σ
√
2π

·exp

(
− (β − µ)2

σ
√
2

(
1 +

2 (n− 1)

π

))
. (5)

We particularize now the above relation to our problem. To evaluate
the estimation error, we express our cost function (1) as a sum of par-
tial functionshm

(
t, T̃

)
=

∣∣∣(S − tm) /T̃ − round
(
(S − tm) /T̃

)∣∣∣;
m = 1, 2, ..., n. It can be easily shown that(S − tm) =
(C −∆cm)Tc + Γ − δm, whereC ∼= nNc and Γ = ηn+1 − η1.
In the nearby ofTc, each functionhm equals zero atT̃m =
ϕm/ (C −∆cm) ∼= ϕm/C, whereϕm = Γ − δm. The random
variablesδm andΓ have the probability distributionN

(
0, σ2

)
, where

σ2 = 2σ2
η. For a given set of observationst , only two terms of

{ δm} exhibit a correlation withΓ which has a constant value. Hence,
we can assume that each r.v.ϕm is approximately distributed as
N

(
Γ, σ2

)
. For the sake of simplicity of the presentation we denote

Ψ = {ϕ′
m; m = 1, 2, ..., n} as the set of increasingly ordered values

of ϕm. As partial functionshm are convex in the nearby ofTc, with
the same form but differently delayed, the global minimum ofthe
cost function, corresponding to estimateT̂c, is ξ = ϕ′

n+1
2

. From (5),
the corresponding probability density function for a single realization
can be expressed as

f (ξ,Γ) ≃ Cn

σ
√
2π

·exp

(
− (ξ − Γ)2

σ
√
2

(
1 +

2 (n− 1)

π

))
.
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Considering thatf (ξ) ≃
´∞
−∞ f (ξ,Γ) f (Γ) dΓ, we then obtain the

following closed form expression:

f (ξ) ≃ Cn

√
π

π + 2 (n− 1)
· 1

σ
√
2π

exp

(
− ξ2

2σ2

π + 2 (n− 1)

2π + 2 (n− 1)

)
.

(6)
If we look at argument of the exponential in the relation above,

ξ is a normal, unbiased variable with the approximate variance
σ2 (2π + 2 (n− 1)) / (π + 2 (n− 1)). For large values ofn the
variance ofξ can be further approximated toσ2. As the chip time
estimate isT̂c = ξ/C, we finally get

var
(
T̂c

)
=

var(ξ)
C2

≃ 2σ2
n

(nNc)
2
.
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