
can select a large number of survivor paths. Fig. 2 shows an exam- 
ple of how our algorithm operates in the Rayleigh fading condi- 
tion, where the proposed algorithm is denoted by the a-algorithm. 

state 0.5 5 la1 C 1.5 iai c 0.5 IaIz 1.5 
0 
1 
2 
3 
L 
5 
6 
7 
8 
9 
10 
11 
12 
13 
1L 
15 

1800121 
Fig. 2 Example of operation of a-algorithm 

We use the following criterion to determine the number of survi- 
vor paths: (i) when la1 < 1.5, we select only two survivor paths; (ii) 
when 0.5 5 la1 < 1.5, four survivor paths exist; (iii) when la1 < 0.5, 
all 16 paths are chosen. Finally, we search the path having the 
minimum metric from the survivor paths. 

10‘ 

L 

L 
P 
a 

E b /No ,dB 1800131 
Fig. 3 Bit error rate of three algorithms 
(i) M-algorithm (M = 5) 
(ii) T-algorithm ( T  = 10.0) 
(iii) a-algorithm 

0 10 20 
Eb /No ,dB  /80014/ 

Fig. 4 Normalised computational complexity for three Viterbi algo- 
rithms (16 state) 
(i) M-algorithm (M = 5) 
(ii) a-algorithm 
(iii) T-algorithm (T = 10.0) 

Results and Discussion: Figs. 3 and 4 show the bit error rate 
(BER) and computational complexity of the three algorithms, 
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respectively. In comparison, we choose M = 5 because the compu- 
tational complexity of the M-algorithm with A4 = 5 is similar to 
that of the a-algorithm. For the T-algorithm, we choose T = 10 
because the BER of the T-algorithm with T = 10 is similar to that 
of the a-algorithm. We can see that the detection performance of 
the M-algorithm is not satisfactory compared with both the T- 
algorithm and the u-algorithm as shown in Fig. 3. Here, all the 
computational complexities are normalised to the computational 
complexity of the original Viterbi algorithm. From Fig. 4, we can 
see that the computational complexity of the T-algorithm depends 
on the bit energy-to-noise ratio (EJN,). When EJN, is < lOdB, the 
complexity of the a-algorithm is lower than the T-algorithm and 
when EJN, is > lOdB, its complexity is higher than the T-algo- 
rithm. We can see that the proposed algorithm has merits when 
EJN, < 10dB. 

If the decision criterion to determine the number of the survivor 
paths according to the estimated charnel conditions is chosen cor- 
rectly, a good compromise between the computational complexity 
and the detection performance can be found. 

0 IEE 1997 ’ 1 April 1997 
Electronics Letters Online No: 19970621 
Goo-Young Jeong, Chang-Joo Kim and Hyuck-Jae Lee (Radio Signal 
Processing Section, Electronics Telecommunications Research Institute, 
PO Box 106, Yusong, Taejon, 305-600 Korea) 

References 

I SAMPEI, s., and SUNAGA, T.: ‘Rayleigh fading compensation for 
QAM in land mobile radio communications’, ZEEE Trans., 1993, 

2 KAMIO, Y. ,  and SAMPEI, s.: ‘Performance of a trellis-coded 16QAM/ 
TDMA system for land mobile communications’, ZEEE Trans., 

3 KIM,C.J., KIM,Y.S., JEONG,G.Y,, MUN, J.K., and LEE,H.J.: ‘Symbol 
error rates of QAM with space diversity in Rayleigh fading 
channels’, ETRZ J., 1996, 17, (4), pp. 25-35 

4 SIMMONS, s.J.: ‘Breadth-first trellis decoding with adaptive effort’, 
IEEE Trans., 1990, COM-38, pp. 3-12 
ANDERSON, J.B., and MOHAN, S.: ‘Sequential coding algorithms: A 
survey and cost analysis’, IEEE Trans., 1984, COM-32, pp. 169- 
176 

VT-42, pp. 137-147 

1994, VT-43, pp. 528-536 

5 

Variation on Euclid‘s algorithm for 
polynomials 

L.C. Calvez, S. Azou and P. Vilbe 

Zndexing terms: Mathematical analysis, Algorithm theory 

It is shown that the sequence of polynomials produced during a 
run of the extended Euclid’s algorithm can be readily obtained via 
the non-extended algorithm, when properly initialised. 

Introduction and notation: Since a paper by Sugiyama et al. [l], in 
1975, showing that the key equation for decoding Goppa codes 
can be solved by Euclid’s algorithm, there has been renewed inter- 
est in the use of the celebrated algorithm. The Pad6 approximation 
[2],  signal processing [3 - 61, system theory and control engineering 
[7, 81 are all relevant. 

Let A(x) and B(x) be fmed polynomials over a field with a 4 
deg(A) 2 b 4 deg(B). It is well-known that the common factor 
G(x) of A(x) and B(x) of highest degree can be computed via a 
procedure consisting of a finite sequence of polynomial divisions 
that we shall call the basic Euclid’s algorithm to avoid confusion 
with the extended Euclid‘s algorithm which yields not only the 
greatest common divisor gcd(A, B) = G, but also polynomials X 
and Y such that 

A X + B Y = G  (1) 
with deg(X) < b-g and deg(r) < a-g, g 4 deg(G), provided a > g 
and b > g .  It is worth noting that gcd(A, B) = G is only unique up 
to a multiplicative constant, but can be made unique by requiring 
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it to be monic, i.e. to have a highest-order coefficient that is equal 
to unity. 

It is the purpose of this Letter to prove that, with a slight mod- 
ification of the starting and terminating conditions, simultaneous 
computation of G and X or Y can be carried out by the basic ver- 
sion of Euclid‘s algorithm. Before developing the new procedure, 
the standard algorithms are briefly reviewed in the following 
where Quot(N, 0) and Rem(N, 0) denote, respectively, the quo- 
tient and remainder polynomials obtained by dividing N(x) by 
D(x) with both polynomials arranged in descending powers of x. 

Basic Euclid’s algorithm: Set So = A, Si = B and perform suc- 
cessively the divisions S,JS8-, to obtain S, = Rem(S,+,, S,,), for i = 
2,3, ..., I+1, until a remainder SI+, = 0 is obtained. As is well 
known, the last non-zero remainder S, yields gcd(A, B) = C = S,. 

Extended Euclid’s algorithm: At the same time that gcd(A, B) is 
being computed via the preceding basic algorithm, polynomials X) 
and I‘) can be computed recursively for i = 2,3, ..., I, using Qt = 
Quot(S,JS,,), X; = x,,-Q& and Y ,  = &QiI’-l initialised with 
X, = Y, = 1 and XI = & = 0. A solution to eqn. 1 is then G = S,, 
X=X,and Y =  Y,. 

The main results of this Letter are now stated in the form of 
two algorithms. 

Algorithm G X  Set R,, = xbA + 1 and RI = xhB. Start the divisions 
RI-21RI+, of the basic Euclid’s algorithm to obtain R, = Rem(R,, 
RtJ for i = 2,3, ... and stop the divisions when the degrees of the 
remainder polynomials R, satisfy deg(RI) 2 b and deg(R,,) < b for 
some I. Then 

R ~ = X ~ G + X  ( 2 )  
and since deg(X) < b, RI yields G and Xa t  once. 

Outline ofproof: The first step is to prove that the polynomials R, 
generated by the algorithm GX are related to the above-mentioned 
polynomials S, and X, by 

Ri = d’Si + X i  i = 0,1, ..., 1 + 1 (3) 
This is readily checked for i = 0 and i = 1.  Let us assume that eqn. 
3 is true for the integers i-1 and i, (1 < i < I ) .  Then, using elemen- 
tary polynomial arithmetic, we can prove that eqn. 3 necessarily 
holds for the next i+l. Therefore, eqn. 3 is proved by mathemati- 
cal induction. To achieve the proof, the integer I evidenced in 
algorithm GX can easily be shown to be identical with the integer 
I in the standard Euclid’s algorithm; then, remembering that SI = 
G and XI = X ,  it is sufficient to set i = I in eqn. 3 to obtain eqn. 2. 
Remarks: (i) As long as our purpose is limited to obtaining G and 
X that satisfy eqn. 1 ,  each R, can be multiplied by any arbitrary 
nonzero constant; these constants may be chosen to save nwneri- 
cal work or to make G monic. 
(iij If, for some I, deg(R,) = b, then the next division to get R,, is 
superfluous, since it is necessary that deg(R,,) < b. In this case, up 
to a multiplicative constant (see remark (ij) RI = 2 + X, which 
implies that A and B are relatively prime, and eqn. 1 reduces to 
AX+BY = 1, known as the Bezout identity. 

Example 1 : Let A = 2 9  + 7 2  + 8x2 + 5x f 2 and B = x3 + 3x2 + 
3x + 2. Since deg(B) = 3, set R,, = x3A + 1 and R, = x3B. By suc- 
cessive divisions we obtain the following sequence of remainders: 

R2 = Rern(R0,Rl) = -x5 - 2x4 + 1 

R3 =Rem(R1,R2) = x 4 + 2 x 3 + x + l  
R4 = Rem(R2,Rg) = z2 + z + 1 

The procedure is stopped at this stage because deg(RJ < 3. Com- 
paring R, = x3(x+2)+x+l with eqn. 2, we get G = x+2 and X = 
x+l. 

Remark : Once G and X are known, Y can be readily obtained 
from eqn. 1 as Y = (G-AX)/B. However, if Y is needed but not X,  
it is better to calculate Y directly, using the following algorithm. 

Algorithm GY: Set R, = PA and RI = P B + ~ .  Start the divisions 
RJ+21Rz+, of the basic Euclid‘s algorithm to obtain R, = Rem(R,,, 
R,J, for i = 2,3, ... and stop the divisions when the degrees of the 
remainder polynomials R, satisfy deg(RI) 2 a and deg(R,,) < a for 
some I. Then 

R r = x ” G + Y  (4) 
and since deg( r )  < a, RI yields G and Y at once. 

Outline of prooj The proof, similar to that of algorithm GX, is 
based on the expression of Ri which is now given by 

Hence, setting i = I gives eqn. 4. 

Example 2: Let A and B be the polynomials of example 1. Since 
deg(A) = 4, set R, = 2 A  and RI = 2 B  + 1. By successive divisions 
we obtain the following sequence of remainders: 

Ri = zaSz + Y, i = 0,1,  ..., I + 1 (5) 

Ra = -x6 - 2x5 - 25 - 1 
R~ = 5 5  + 224 - 2x2 - 3s 

R~ = -22 - 322 - 2x - 1 
The procedure is stopped at this stage because deg(&j < 4. Com- 
paring R3 = 9(x+2 jx(2x+3) with eqn. 4 yields G = x+2 and Y = 
-x(2x+3). 

Example 3: Let Ax) = co+c,x+c2x2+ ... be a power series in the 
indeterminate x over a field and let N be a non-negative integer. 
From [Z] it is known that the extended Euclid’s algorithm applied 
to x N + l  and cNxN + _.. + co yields Nth order Pade approximation S,/ 
r; to fix). Thus, producing a Pade approximation via algorithm 
GY is straightforward. 

To get third order Pade approximations to ex (a standard exam- 
ple) let us apply the algorithm GY to A = 2 and B = x3/6+x2/ 
2+x+1. Set R, = x8 and RI = 2B+1. To save numerical work we 
could (but do not) drop multiplicative constants in the remainders 
which are obtained in succession as 

RZ = 3[z4(x2 + 42 + 6) - 2 s  + 61 

RY = [x4(2x + 6) + z2 - 42 + 6 ] / 3  

R4 = 3[x4(6) - x3 + 32’ - 62 + 6]/2 
On account of eqn. 5, four third order Pade approximations S i / z  
are available from R,, i = 1 ,  2, 3, 4. For instance, the (1,2) approx- 
imation extracted from R, is S31Y3 = (2x+6) / (xz4x+6) which 
agrees with a well-known result in the literature. 

Conclusion: The proposed variation of Euclid’s algorithm auto- 
mates the calculation of X; and/or Y ,  polynomials associated with 
the extended algorithm. Since this method involves only remainder 
calculations, it is very easy to use. 
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