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ABSTRACT: A new procedure for deriving a balanced realization of continuous time or discrete time
block-factorized transfer function is proposed. This work is based on orthogonalization processes of
input maps through use of Routh|/Astrom tables and modular polynomial arithmetic. © 1998 The
Franklin Institute. Published by Elsevier Science Ltd.

1. Introduction

Balanced realizations of linear dynamical systems have become an even more indis-
pensable tool in the model reduction domain (1-3) or for the synthesis of minimum
roundoff noise digital filters (4). For this purpose, many methods have been proposed
for achieving a balanced realization from a given transfer function matrix (TFM).
Starting with a known TFM, various methods avoiding the numerical solution of the
Lyapunov equations have been developed: some of them deal with the known poles of
the system (factorized form, restricted or not to simple and real poles) (5-8), other
methods apply to the rational form of the Laplace or z TFM (9-14).

Nevertheless, this great diversity of various methods, each of them dealing with each
specific form, can be seen as the actual weakness of balancing algorithms impeding a
larger use in various engineering domains. For solving those various cases, the present
paper describes a unified way which relies on orthogonal input maps. The Input/Output
(I/O) maps have been introduced first by Burns and Fairman when the poles of the
system are known (8). However, managing complex and multiple poles gives rise to
involved balancing algorithms.

In this paper, we merge the approaches suggested in (8) or (10-13) in a unified way
with the help of I/O maps, and extend the orthogonalization procedure to solve the
frequent engineering case of block-factorized Laplace or z TFM. This work is based
on orthogonalization processes of input maps through use of Routh/Astrom tables
(17) and modular polynomial arithmetic. The background concerning Input/Output
maps is first presented in section 2. Use of Routh/Astrom tables for the orthog-
onalization of input maps and extension to discrete or continuous time block-factorized
TFM is described in section 3. Section 4 is then devoted to the computation of a
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minimal balanced state space realization. Finally, a numerical example is given in
section 5.

I1. Realizations and Input|Output Maps

As stated by Burns and Fairman in (8), [/O maps yield a worthwhile representation
of a given TFM in order to build the corresponding balanced state space realization.
These maps lead to computationally attractive methods avoiding the solution of the
Lyapunov equations. In (8), an orthogonal input map is built from the modes of the
system and then, the observability Gramian is obtained in a convenient manner which
gives the balanced realization from a simple coordinate transformation based on the
eigenvalues and eigenvectors. However, dealing with I/O maps in the Laplace or z
domain is more convenient for a unified approach (10-13).

Starting with the most general form of TFM (block-factorized TFM), this section
states the basic properties of I/O maps for continuous or discrete time systems.

Definition 1: For any realization (4, B, C, D) of a continuous time impulse response
matrix H(t), the I/O maps L(z), M(¢) are defined as:

L(H) =e"B
{ s (1)
M(f) =e*'C?

where § designs the conjugate-transpose.

Theorem I: L(t) is an input map for the continuous time impulse response matrix H(¢)
iff:

d
3(4,C) H(t) = CL(¥), aL(x) = AL(Y). 2)
In the discrete time case we have the following similar results:

Definition 2: For any realization (4, B, C, D) of the discrete time impulse response
matrix H[n], the I/O maps L[n], M[n] can be defined as:

{L[n] =A""'Bn>1; L[0]=0 )
Mln) =(4""")$C%n>1; M[0]=0
Theorem II: L[n] is an input map for the discrete time impulse response matrix H{n] iff:

3(4,C) Hn) = CL[n), Lln+2] = AL[n+1]. ()

In the sequel, the input maps will be assumed to have independent rows. A such
input map is particularly attractive because the corresponding (controllable) realization
is unique.

Furthermore, usefulness of orthogonal input maps has been pointed out for achieving
a balanced realization.
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Definition 3: Let L(f) be a continuous time input map and L[n] be a discrete time input
map (having independent rows) for any continuous/discrete time impulse response
matrix. Let W,, W, be the controllability/observability Gramians for the unique cor-
responding realization (4, B, C, D) (the existence follows from the stability of the
TFM):

W,=<{L L™ = r LOLYdt; W,={M,M" = r M@OM3(¢) dt Q)

0 0

(continuous time case)
Wo=(LL™ = Y Lp0LS0l; W, = <M My = Y MMl (6)
n=0 n=0

(discrete time case).

The input map L is said to be orthogonal, and then noted L, if the controllability
Gramian is diagonal. A realization will be called an input orthogonal realization, and
then written (4,, B,, C,, D)), if the corresponding input map is orthogonal.

It follows that the problem of determining a balanced realization of a TFM is reduced
to a single eigenvalue—eigenvector problem once an input orthogonal realization and
its observability Gramian W,, have been determined [the eigenvalues of the con-
trollability/observability Gramians product are the squared second-order modes (15)].

In the sequel, interest will focus on TFM given in the following block-factorized
form, avoiding the iterative pole finding process or the inaccurate representation of
high order polynomial coefficients:

mo N
with (g = [T 2@

i=1,...,0
H(q) = [hi/(‘])]j: 1,...,u i—1 Di(q) @

with ¢ = s in the continuous time case, ¢ = z in the discrete time case and where
{Di(q@);k=1,...,m} is a set of pairwise relatively prime polynomials, of degree
n,...,Mn, respectively.

In the following theorem, initial I/O maps are derived directly from the TFM:

Theorem III: Let the given stable continuous/discrete MIMO system be described by
its TFM:

i=1,..., . m Nii(q) 2 Pi(q)
with  7,(q) = & =g, L
j=1,...,u ) kl:II D, (q) Gu k;| D, (q)

H(q) = [h;(q)] ®)

where g;;€ R and deg [P;;,] < deg[D,].
The derivation of the {g,, P;,} can be performed in an efficient manner as it is
pointed out in the next section.

1. The following rational matrix is an input map for H(g):

Lo(q) =1,®¥(g). with ¥(g) =[¥i(q),.... ¥, (9] )
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where
T 1 mn.—1
\P/c(q)zi[lb"'sqk ]’ k=1>sm3 n/czdeg[Dk]'
Dk(CI)
2. The realization (A, By, Cy, D,) corresponding to this input map is obtained as
rAdg=1,8 A4, with A, =diag[4.,...,4.]

m

By=1,®B, with B, =[B],....BI"

m

Q=1 ) ) )
1 G =[CT with C¥=[C¥,...,C¥] (10)
Jj=1,...,u
i=1,...,v
D0=[q,:,-]_
- j=1,...,u

where (4., B,,, Cf.f/;) is the controllable realization for the rational fraction
P i(q)/Di(q), with A4, the bottom companion matrix for D, B, = [0,...,0, 17"
and C,_elements being the P, coefficients.

3. The corresponding output map is given by the relation:

Fy ... F,
Mo(q) = Foll, ® ¥(g)], with Fy=| : . (11)
Flu R E'u
where F;; = diag[F};;, ..., Fj;,.l, Fi;, being the Bezout matrix for the polynomials

(Pi/',k7 D/{)'

Proof: 1t is easily seen that the matrix L,(q) in Eq. (9) satisfies the relations in Eqns
(2) and (4) with the matrices (4,, Cy) given in Eq. (10). It follows from this observation
that (4,, By, Cy, D) in Eq. (10) is the realization for L, in Eq. (9). It has been shown in
(10, 11) that the I/O maps for a bottom companion controllable realization of any
scalar transfer function is the Bezout matrix of its numerator and denominator. Then
the result in Eq. (11) is immediately derived. [ ]

Remark 1: As stated in the above theorem, an initial input map can be obtained directly
from the TFM using the block companion realization in Eq. (10). The corresponding
output map is easily achieved owing to Bezout matrices [Eq. (11)]. However, we must
emphasize that in the present paper, Bezoutians are not employed as a criteria for
checking the relative primeness of polynomials.

Theorem III extends I/O maps properties to the most general case of block-factorized
TFM. These results will be used in the balancing procedure: orthogonalization of input
maps is first considered.

III. Input Orthogonal Realization Using Modular Polynomial Arithmetic

It has been shown that orthogonal input maps are highly desirable when balancing
transfer function matrices: first results have been obtained by Burns and Fairman when
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orthogonalizing exponential functions in the time-domain (8). In the Laplace domain
(resp. in the z domain) it has been pointed out that the classical Routh table (resp.
Astrom table) gives rise to an orthogonal set of functions (10) [resp. (11, 17)]. Inter-
esting results based on these properties have been proposed to derive balanced real-
izations using I/O maps (10-13).

In the sequel, extended results are stated which deal with block-factorized continuous
and discrete time TFM [Eq. (7)]. For this synthetic method, the input map is obtained
from an extended orthogonal set and the corresponding orthogonalization matrix is
computed via modular polynomial arithmetic.

Theorem IV Let the given stable continuous/discrete time MIMO system be described
by its TEM [Eq. (7)].

In the continuous time case, each polynomial D,(s) gives rise to an orthogonal set
extracted from the associated Routh table:

k(o
Dy (s), k=1,...,m—>{¢f"(s)=g:8;; I=1,....n) (12)

with {@f, ¢}> = 0f* 6, ;, where J,; is the Kronecker delta.
In the discrete time case, each polynomial D,(z) gives rise to an orthogonal set
extracted from the associated Astrém table:

D2, k=1,....m— {(pf‘(z) - gig /= 1,...,n,(} (13)
with (of, ¢} = 6/7 .
Let
() = [@](@)..... 0L ()] (14)
with
kle _
OL0) = [0 a0 ] o . itg=s (>0
k=1 Dy 1 ’
W) = @b 01 1 5 0 vith D79 =20, (1) ifg=2 k>

(15)

Then L,(q) = I, ® ®(g) is an orthogonal input map for H(g).

Proof: 1t follows from (18) that the functions of the column vector ®(g) form an
orthogonal basis. Using Theorems I and II, it is easily seen that L, (q) = I, ® ®(q) is
an input map for H(g). Then it follows that L, (g) is an orthogonal input map. [ ]

Then an orthogonal realization can be easily derived through use of an orthogonaliza-
tion matrix.
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Theorem V: The following realization (4, B,, C, D) of H(g) is input orthogonal and
controllable:

A =L@ O)4,I,®C™")
B, :(Iu® C)Bo
C.=C(I,®C™)

D, =D,

(16)

The controllability/observability Gramians are:
Wer = ITuxw
Woi =F.Fl (17)
with F, =(,® C"HF,(I,®C™")

where the orthogonalization matrix C is defined by:

Ly(g) being the input map for the initial realization (4, By, C,, D,) defined in Theorem
I

Proof: 1t is easily seen that each function of the orthogonal vector ®(g) defined in
Eqns (14) and (15) can be expressed as a linear combination of the functions of the
initial column vector ¥(gq) in Eq. (9): ®(q) = C¥(g) (C being the orthogonalization
matrix). Then, it enables the orthogonal input map L, (¢g) to be written as L, (q) =
(I, ® C)Ly(q), with Ly(q) = I, ® ¥(q) the initial input map. The input orthogonal
realization (4,, B,, C,, D,) is then obtained from (4,, B,, C,, D,) through the similarity
transformation (I, ® C~'). According to the foregoing it follows that the corresponding
controllability Gramian is W,, = [.,. The output map of (4,,B,,C,,D,) is given
by M, =(I,® C~")M, with M, in Eq. (11), which gives rise to the final expression of
the observability Gramian W,, in Eq. (17). [ |

It is shown in the sequel that the orthogonalization matrix C can be derived in an
efficient manner using modular polynomial arithmetic.

In the elementary case where the denominator D(g) is common to the elements /,,(q)
of the TFM, the rows of C are readily copied from the rows of the Routh/Astrom table
built to verify the stability of D(g). The matrix C is then lower triangular.

Let us consider now the more general case where the least common denominator of
H(g) has the factorized form D(gq) = I1}_, D, (¢)(m > 1). It is easily seen that the
n, = deg[D,] first rows of C are derived proceeding the same way. The other rational
(strictly proper) functions of the orthogonal vector ®@(g) have a factorized form [Eqns
(14) and (15)]. To compute the corresponding rows in the matrix C, rewrite each of
them using a partial fraction decomposition:

A5 (9) = Di(q) _x Pli(q)
Di(q) =i Di(q) = Di(g)’

=2,....m, j=1,...,n

where D,(q) = D,(—s) in the continuous time case and D,(¢) = z"D,(1/z) in the discrete
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time case. The (Zf=/ n,+j)th row of C is then immediately obtained by copying the
coefficients of the polynomials PJ,(q).

It has been shown in (19) that use of modular polynomial arithmetic is worthwhile
to do such rational fractions decomposition since it gives rise to fast algorithms. Then
the orthogonalization matrix can be efficiently determined since all the computations
involved to decompose the factorized functions in Eqns (14) and (15) are done using
low degree polynomials.

Some results concerning modular polynomial arithmetic can be found in the Appen-
dix.

1V. Balanced Realization

As a direct application of the previous results, a method is proposed to achieve
balanced realizations of MIMO systems known by their TFM [Eq. (7)]. Due to the
orthogonalization procedures described above, the technique applies as well for con-
tinuous or discrete time systems.

The steps involved in the algorithm are summarized in the following:

1. Compute the numbers g,; and the polynomials P;;;(¢g) in Eq. (8) using the partial
fraction decomposition algorithm described in the Appendix.

2. An initial controllable realization (4,, By, C,, Dy) with 1/O maps Ly(g), M,(q) is
given by Eqns (9)—(11).

3. Form an orthogonal input map L, (¢) as described in Theorem IV. The functions
extracted from the Routh/Astrém tables will be normalized here.

4. Compute the orthonormalization matrix C such that L, (q) = (I, ® C)L,(¢g) with
the aid of the partial fraction decomposition algorithm.

5. Compute the input orthogonal realization (4,,B,,C,, D ) which is deducted
from (A4y, By, Cy, D) by the similarity transformation (I, ® C~'). Note that the
computation of the inverse matrix C~! can be done in an efficient manner using
the particular staircase form of C. The corresponding controllability/observability
Gramians W, ,, W,, are given by Eq. (17).

6. Eigenvalue—eigenvector decompose W, :

O"W, Q=27 with X =diag[s,,...,0,,0,...,0] = diag[Z, 0] (19)

where the g;, i = 1,...,r denote the second-order modes and r the Mac-Millan
degree of H(q).

Note that with the proposed procedure no minimality of the transfer functions
h; in Eq. (7) is required. Hence, due to the numerical inaccuracies, some o;
corresponding to the unobservable part (in the case of a nonminimal input
orthogonal realization) may not be exact zeros. Then, r will be an estimation of
the Mac-Millan degree of the TFM.

7. Use the Q matrix as a similarity transformation to obtain the following input
orthogonal realization (4, B’ ,C’,D’) from (4,,B,,C,,D,), the Gramians
being Wiy = L, Wor =27

8. Reduce (4., B\, C’",D") to an r-order irreducible form (A'}, B}, C'/, D") by eli-
minating the unobservable part.
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9. Finally, use of the similarity transformation £~ ' starting from (4", B, C’, D)
leads to a minimal balanced realization (A, By, Cy, D) with controllability/
observability Gramians equal to X.

V. Example

The present method is particularly convenient for the design of analog circuits where
the cascade of elementary circuits yields high order block-factorized transfer functions.
In the discrete time domain, low order models and robust realizations are also welcome:
the following example, appearing in the design of digital filters, has been proposed by
Mullis and Roberts (20). For the redactional purpose the order of the Butterworth
low-pass filter has been limited to a low value (6).

H) < 9.8x10 *(z+1)? >< 9.45x107*(z+1)2 )( 9.325x 107 *(z+1)? >
zZ) = .
22 —1.9641z+0.96802/ \z* —1.91122+0.91498 ) \z* —1.8819z+0.88563
The input map of the initial block controllable realization is given by:

i 1
0]
22 —1.9641z+0.96802
1
Ly(2) = ¥(2) = (-1

22 —1.91122+40.91498
1
1 z
22 —1.88192z+0.88563 -

The output map being M,(z) = Fy¥(z), with

r 0.027283  —0.025191 0 0 0 0 7
—0.025191  0.022929 0 0 0 0
0 0 —0.16859  0.17646 0 0
Fo= 0 0 0.17646  —0.18433 0 0
0 0 0 0 0.13511  —0.14775
L 0 0 0 0 —0.14775  0.16140 _

Then the required orthogonal input map is easily built from the Astrom tables of
each order-2 denominator.

The two functions ¢,(z), @,(z), elements of vector ®,(z) derived from the first
denominator, are readily copied from the standard Astrom table:

1 —1.9641  0.96802
0.062937 —0.062811 o, = 0.96802 .
2.5047¢—0.4 o, = —0.997998

Thus ¢,(2) = (2.5047 x 10~%)/(z*—1.9641z+0.96802), ¢,(z) = (0.0629z—0.0628)/
(22— 1.96412+0.96802) are the two first orthogonal functions. Proceeding the same
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way for @,(z), ®;(z), normalizing the scalar products and then using Eqns (14) and

(15), gives rise to the orthonormal input map:

1

22 —1.9641z+0.96802

|

0.015826
0.25087z—0.25037

|

0.025340
0.40350z—0.40270

1 0.96802z% —1.9641z+1
22 —1.91122+0.91498 2> —1.9641z+0.96802

| J

1 0.91498z> —1.9112z41 0.96802z* —1.9641z+ 1
22 —1.88192+0.88563 2> —1.9112z+0.91498 z*—1.9641z+0.96802

[ 0.029195 }
X

0.46439z—0.46347
Writing each function of L, (z) as a linear combination of ¥(z) gives the staircase
orthogonalization matrix L, (z) = C¥(z) with

Li(z) =

C=
- 0.015826 0 0 0 0 0 1
—0.25037 0.25087 0 0 0 0
—0.034768 4.8676 x107* 0.05904 —4.8676x107* 0 0
0.4775 —0.47875 —0.86734 0.86934 0 0
0.062672 —0.015145 —0.35554 7.2348x107* 0.31976 7.9098 x 10~*
L —0.76172 0.76416 5.5388 —5.5502 —5.1875 5.1974 i

Use of the similarity transformation C~! then yields an input orthogonal realization
(4,,B,,C,, D)), with the following observability Gramian [Eq. (17)]:

r 0.6045 0.021287  0.23084  0.17539 0.014685  0.016078 7
0.021287  0.30363 —0.23214 —0.045291 —0.039052 —0.033372
0.23084 —0.23214 0.49364  0.13303 0.086212  0.073233
Wou = 0.17539 —0.045291 0.13303  0.068885  0.014507  0.013637
0.014685 —0.039052 0.086212 0.014507  0.017723  0.014638
L 0.016078 —0.033372 0.073233  0.013637  0.014638  0.012147

The second-order modes o¢; are then computed via the standard eigenvalue/
eigenvector decomposition of W, :Q"W, Q0 =2%? with X = diag{s,} = diag
[0.9469, 0.7003, 0.32622, 0.083308, 0.011126, 6.3808 x 10~7].

This minimal balanced realization is then computed using the similarity trans-
formation "%
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r 997.17 —32.286 59946 —6.1345 23016 0.61143 7
32.286 088.33 40.77 —12.22  6.0225 1.5399
y 10-3 5.9946 —40.77 973.7 44.043 —13.14 —3.5866
b 6.1345 —12.22 —44.043 95481 43911 9.6995
2.3016 —6.0225 —13.14 —43911 933.61 —37.423
L —0.61143  1.5399 3.5866 9.6995 37.423 909.57
B, =[0.067829 —0.12126 —0.12478 —0.081022 —0.034352 8.9751x1077%]

C, =[0.067829 0.12126 —0.12478 0.081022 —0.034352 —8.9751 x 10~°]

D, =8.6359x 10 '°.

VI. Conclusion

An efficient technique for deriving an input orthogonal realization from a given
block-factorized transfer function matrix has been proposed. Extended orthogonal sets
in the Laplace or z-domain are easily obtained directly from the coefficients of the
elementary blocks via Routh/Astrom tables. Use of an algorithm based on modular
polynomial arithmetic then yields an orthogonalization matrix in a convenient manner
since computations with inaccurate high degree polynomials are avoided. An appli-
cation of the method for achieving a minimal balanced state space realization has been
shown. Hence, no resolution of Lyapunov equations is needed and it as well applies to
factorized or not, continuous or discrete time systems.
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Appendix—Modular Polynomial Arithmetic

The efficiency of this block balancing algorithm is partly due to the intensive use of the modular
polynomial arithmetic: all the computations are performed with low polynomial degrees.

The orthogonalization matrix C in Eq. (18) is easily obtained by an iterative divide process
which has been previously suggested in (19). All the computations are performed in an efficient
manner since the polynomial degrees of the Laplace or z transforms of the orthogonal functions
are reduced using modular polynomial arithmetic.

Consider the block-factorized function given as:

Flg) = y _ Ni(g)
(@) =i Dilq)
where {D,;k = 1,...,m} is a set of pairwise relative prime polynomials. The polynomials P(g),
k=1,...,msatisfying

(deg[N] < deg[D])

m Pk
Fo =0+ 5 1y

can be written, using the notation of modular polynomial arithmetic

(]_[ Nk>mod D,
£=1
< IT Dk)mod D,

k=1
k' #k

geR, deg[P] <deg[D,] =n

P, = mod D,. (A1)
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Let us introduce U = (IT}_, N,) mod D, and V =(I1}!_, ., D;) mod D,. Then, the P, are given
by:

P, = [(Umod D;)X] mod D,
where X = (1/V)mod D, is a polynomial which can be computed via the Euclidean algorithm

(16).
It is easily seen that if deg [N] < deg[D], then g = 0, else g can be computed as:

. 1 if deg [N,] < deg[Dy]
g = H g Wwith g, = .
k=1 quot(N,, Dy)  if deg[N,] = deg[D,]



