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A New Discrete Impulse Response Gramian and its sums of the impulse response is introduced for linear, time-invariant,

Application to Model Reduction asymptotically stable, discrete SISO systems. It is related to standard
controllability, observability, and cross Gramians and is found to be
S. Azou, P. Bréhonnet, P. Vilbé, and L. C. Calvez the solution to the Lyapunov equation for a particular state-space rep-

resentation. It is also shown that the characteristic polynomial can be
) ] obtained using some impulse energies contained in the GIRG. Applica-
Abstract—Some fundamental properties of a new impulse response i, of these properties to model reduction is then investigated, and an
Gramian for linear, time-invariant, asymptotically stable, discrete - . . - .
single-input—single-output (SISO) systems are derived in this note. This €fficient procedure is propo_se_d. The ROM is e!aborated In two major
Gramian is system invariant and can be found by solving a Lyapunov Steps: a reduced characteristic polynomial is first computed and then
equation. The connection with standard controllability, observability, and  some Markov parameters or time moments are retained. The stability
cross Gramians is proven. The significance of these results in model-order g4 minimality properties of this ROM are studied. A numerical ex-
reduction is highlighted with an efficient procedure. ample is proposed, and a comparison with well-known discrete model
Index Terms—Discrete time systems, Gramians, model reduction. reduction techniques is carried out.

|. INTRODUCTION Il. THE DISCRETEGENERALIZED IMPULSE RESPONSEGRAMIAN

Impulse response Gramians (IRG) have been introduced by Sreeraif Fhis sect.ion, we first define the GIRG and then describe properties
and Agathoklis to derive reduced-order models (ROM) for linear, tim@f this Gramian. o o
invariant, asymptotically stable, continuous [1] or discrete [2] single- L€t (4, b, ¢) be annth-order, minimal, state-space realization of
input-single-output (SISO) systems. Usefulness of these Gramiansﬂa%f?le* linear, discrete SISO system with impulse respbfige=
also been shown in a system identification application. cA _b'_ ) ) ]

An IRG contains elements that are inner products of functions givenPefinition 2.1: The (n + 1)th-order GIRG is defined as follows:
as successive derivatives or delays of the impulse response in contin- Wy 1= [(wogi—1s wory—1)],
uous case and discrete case, respectively. It can be obtained by solving v ! PUETITR, =L

the Lyapunov equation for the controllability canonical realization of g=-n+l--.0 @
the system. _ _ _ with wo[k] = h[k] and

In [1], the approach is based on matching the firstarkov parame-
ters and; x ¢ entries of the IRG. The procedure has been extended to the wipr [k] = wilk + 1] — wi[k], 1eNT;
discrete case in [3], where the relation to th#arkov cover method oo
is discussed [4]-[6]. This method usually yields good approximations wimi[k] = = > wil'], reN" 2
at high frequencies, but a large error on the steady-state behavior is V=Fk

noticed. An improved low-frequency approximation is achieved faind where(f, g) = 35, f[k]g[k] denotes the inner product of two
discrete systems in [10] by matching some initial time moments aggusal real functiong[k], g[k].
low-frequency power moments. For continuous systems, this drawbaclsuccessive differences and sums of the impulse response defined
has been overcome with a reciprocal transformation [7], [8] to preserive(2) have been previously used as candidates for constructing a set
the firstq time moments ang x ¢ entries of the Gram matrix [9]. An- of approximating functions in [16]. An interesting property of such
other ROM building procedure, both valid in the continuous case [1dperators is that they preserve the original poles in-tdemain.
and in the discrete case [2], is based on the approximation of a energgome key properties of the GIRG are now considered in the fol-
criteria by a diagonalization and a direct truncation of the IRG. Use gfwing theorem.
the singular perturbation technique is suggested if a good approximaTheorem 2.1:
tion at low frequency is required. Note that the methods in [1], [2], and i) The nth-order GIRGIV, ,, can be written as
[11] still apply if the IRG is weighted (WIRG). '

The approach in [2] has been recently extended to mul- Wen = CqT WoCq
tiple-input-multiple-output (MIMO) systems with the definition W, = O,Wl@;f
of an extended impulse response Gramian (EIRG), and a convergence W —OW.C @3)
property to balanced realization [13], [14] has been established. G AT eema

Krajewskiet al. have proposed a mixed use of the results in [1] and whereW,., W,, andV., denote, respectively, the standard con-
[8] to derive a ROM matching Markov parameters, time moments, and  trollability, observability, and cross Gramian for any minimal
impulse response energies [15]. Itis based on a generalized definition  realization( A4, b, c).
of the IRG of Sreeram and Agathoklis using successive derivatives or The matrices{C,, @, } used in the above factorizations are
integrals of the impulse response. This method is efficient but applies given by
only to continuous time systems.

The initial motivation for the present paper is the extension of this Co=[(A=D), -+, (A=) 't]
approach to discrete case. A generalized impulse response Gramian gnd
(GIRG) composed with scalar products of successive differences or OqT _ [[c(A _ I)q]rrv e, e(A = I)q+n—1]T:| . 4)

i) W, . is the solution to the Lyapunov equation
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iii) The realization(4, b,, ¢,) has the following structure [in ac-  Theorem 2.2:Let p(z) = S, aiz" " (a0 = 1) be the charac-
cordance with the proposed values fosee (1)]: teristic polynomial for any minimal realizatidm, b, c) of the system.
Let the corresponding: + 1)th-order GIRG be partitioned as

rr. o --- 0 —an
11 . —ln_1 Wont1 = = :|
A Wy ntl | We,n+1
A= 0 1 0 (6) . i n X1
with W, ,, thenth-order GIRGw,, »+1 € R ,andwg, nq1 € R.
: R - Then, the following equation holds:
L0 - 0 L —d A a=—(Wyn) wynt 9)
o wherea’ = [@,, ---, @] andy. ", 72" = p(z +1).
bg = (0,---,0,1,0,---,0 Proof: By definition,w,. .11 is given as
——— ——
L —a qt+n—1 > "
[ Wq,nt1 = Z [welk], <+, won—-1[K]]" wasn[k]
b e g o - .
éq = ) ‘75'2, ti, my, nlz, (7 With w,in[k] = cA*=T (A — )75 (10)
—q q+1

- Letp(z) = 3°7_, @=""" be the characteristic polynomial fad —1I).
where{ t;}i=1 2 ... are the time moments of the system andhen, from the Cayley—Hamilton theorem, we get

{m} = ¢(A = I)""'b}i1,», ... are given as linear combina- n -
tions of the Markov parametefsn; }i—; o, ... (A-D™" = =Y a(A-1)H
=c(I—A)"" and
my =A™ wan[K = =37 Tiwgpni[k]. (11)
, i—1 l _ 1 i
A — J P
mi = ;( 1) < ; )””—f ®)  Finally, substituting (11) into (10) yields (9). -

Usefulness of these results in model-order reduction is shown in the

and where{a;};=;. ..., denote the characteristic polynomialnext section.
coefficients for(A — T).
Proof: i) Starting withwo[k] = h[k], it is easily shown that, for
any! € N, the functionw,[k] derived using one of the transformations |_et us consider anth-order original model described by the stable
in (2) can be expressed as[k] = c(A — I)'A*'b = cA* (A - proper transfer functiodf () = N(z)/D(=) with a minimal realiza-
0'. tion {x[k + 1] = Ax[k] + bu[k], y[k] = cx[k]}.

Writing each inner produdtu i1, wqt;-1) appearing in (1) by The objective of model reduction is to find a state-space realization
the (A, b, ¢c) matrices then yields directly the relations in (3). Ads {&[k 4+ 1] = A, Z[k] + boulk], §[k] = c.&[k]} with #[k] € R™!
assumed to be asymptotically stabllel(] < 1), the matrix(A — I) andr < n, such thatj approximatey as close as possible for all
is nonsingular [19]. Thus, the existence{af,, O,} is ensured, and admissible inputs.

I1l. M ODEL ORDER REDUCTION

because{4, b} is controllable(, is nonsingular. . LetW,, ,+1 andW, ,+, be the(r+1)th-order GIRG for the original
ii) The observability Gramian fof A, ¢,} is given byCq WoCy,  and reduced-order model, respectively, withghgarameter chosen in
which is seen to be theth-order GIRG for:[k] in view of (3). the set{—r + 1, ---, 0}.

iii) Let ¢ = 0 andp(z) = Y77, @;="~" be the characteristic poly-  An efficient GIRG-based model reduction technique will be pro-
nomial for (A — I). Itis well known that a similarity transformation posed in the following. This technique can be seen as an extension to
using the standard controllability matrix yields a state matrix undefiscrete systems of the approach considered in [15]. It consists of an

companion form approximation of some impulse response energies by first finding a re-
duced-order characteristic polynomjgl(z) and then matching some
lac=A = { O |- a:| , C=1[b Ab -~ A"'b] Markov parameters or time moments.
Ina Let the GramiansV,, ., andW,, .., be partitioned as
wherea” = [a,, -+, a;] andp(z) = 3", a;z" " is the character- ) Wor | wgrta
istic polynomial of A. Worpr = | —
Wy i1 Wy, r41

Then, it follows that

X'Vq, r ‘l’ilq, r41
1 |- 12)

~ o~
Wy, r41 Wq,r+1

B "i’rq, r+41
In -1 - a:|

G A= D6 = (=D = |

Suppose thatV, . matches the originatth-order GIRG:W, , =

whereCo =[b (A=1)b --- (A=D""'blanda” = [Gn, -+, @1]. Wy r.

Then, we get (6). As the differences and sums in (2) preserve theNe will now calculate an-th-degree polynomiap, (=) such that
original poles, the state matrix is the samefoe= —n + 1, .-, 0. [[@g, 41 — wy, 1 ||Z is minimized. From Theorem 2.2y, 41 =
The proof of (7) is straightforward and omitted. | —Wq rig, Wherea, = [a,, ---, a1] andp,(z) = 37_, &,M'*Z =

Remark 1: As {4, ¢,} is observable, it follows from (5) thd¥,, .  p,(z+ 1). Hencewq’rﬂ matcheswy, 41 if
is posiEive definite and thih-order GIRGIV, ; is positive definite for G = — (Wo)  wyrin. (13)
anyl < n

The following theorem shows that the characteristic polynomial c#¥6 W, - is positive definite, its nonsingularity is ensured (Remark 1).
be extracted from the GIRG. Oncea, has been computed, a reduced-order state matriwith a
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Fig. 1. Bode plots (magnitude).

form like (6) is readily obtained; it remains to choose input and output” W, A = Q, with Q, = éréq, where @, b,. ¢,) is obtained

vectors(b,. ¢,) to get our ROM. from any realization( A, b, ¢) using the similarity transformatio@,

From Theorem 2.1, we know that théh-order GIRG for the ROM defined in (4). It is seen that theh-order original GIRG solves the
solves the Lyapunov equation following equation:

"'qu, r = fizﬁfq,r/‘iq = éqTéq (14) Wy, — ’i;éyquv"fiq = Qq(l s lor)+ Q;r (15)

Where{liq, ¢q} have a form like (7). with

The matrices{A,, b,} are known assuming that a characteristic o = {0 0}
polynomial for the ROM has been computed using (13). Then, (14) 0 o _
suggests that, may be chosen so that some of the time moments or a=wg 41— Wy rpa(r+1:r4+1,1:r)a, (16)

Markov-type parameters (8) of the original model are matched. where the subscripting notatiad (i : j, i’ : j') stands for the sub-
The main steps involved in our reduction procedure are then SUMatrix with rows: - - .j and columns’ - - - j' of matrix M.
marized as follows. Q, is a positive-semidefinite matrix. Therefo@,(1 : », 1 : r)
Step 1) Given amth-order original mode(A, b, c), choose any s positive semidefinite.
qg € {-r+1,---,0} withr < n and then determine
the particular realizatiof A, ?Jq, ¢4) using the similarity
transformatiorC, in (4).
Step 2) Solve the Lyapunov (5) to determine tha-order GIRG N
Wyn. Wy rpi(r+1:r4+1,1: 7)ag = (Wetr, Wotr) a7
Step 3) Partition ther + 1)th-order original GIRG as (12) and \ypere,s, ., [£] is thel, -optimal approximation of the functian, 1. []
solve (13) to obtain amth-degree characteristic polyno-, it the set{wgi1[k]}:

To get the required result, we shall now show t@al is also a pos-
itive-semidefinite matrix.
It is seen from (13) that the following equation holds:

mial.
Step 4) Form the reduced realizatiopd,, b,. ¢,): the state ma- e[k = = 3 @i, (18)
trix 4, follows from Step 3) with a structure as in (6) and i=1
{b,. ¢4} matches the first entries of{b,. é,}. Hence, we have the following expression for the last diagonal entry of
The condition to preserve the initial stability is given by the next the?;
orem. .. )
Theorem3.1: Let (4,, b,. ¢,) be therth-order ROM of any asymp- O = (Wotrs Watr) = (Datr, War) - 19)

totically stable initial systemiA, b, c) derived using our GIRG-based . .

algorithm: i, (=) cannot have any zeros outside the unit circle. FuEr]S"} the zrthogopalltyk prlnmplﬁ, we Iknowhthat the —error
thermore, providedA,, ¢, } is observable, the ROM is asymptoticallye[ ]_.qu_r,»[ ] = “@qr[4] is orthogonal to the approximating
stable. functions: (e, wg4r—;) = 0,7 = 1, ---, 7, which implies that the

Proof: From Theorem 2.1, it is known that theh-order orig- second scalar product in (19) is the energy of the approximate function

inal GIRG W, _,, is the solution to the Lyapunov equatid#i, , — (Wagry Wogr) = {Watr, Watr) - (20)
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TABLE | where C{-} denotes the standard controllability matrix. Because

ERRORS FOR THEREDUCED ORDERMODELS C{(A, — I), b,} andC{A,, b,} have the same rank, the control-

lability matrix for our ROM realization is of full rank provided that

Models  Tmpulse Error (%) Step Error  DC-Gain Error (%)

CIRGS 127 0.1139 ) dr # 0. Noting thati, = p4(1) achieves the proof.
BRS5 1.19 o0 6.25 Finally, assumind A,, ¢4} is observable yields the asymptotic sta-
WIRGS L13 ot 12.69 bility (see Theorem 3.1), which impligs (1) # 0 and therefore con-
L5555 236 0.0691 0 trollability; in this case, the ROM is minimal. [ |
Remarks:
A known property derived from the orthogonality principle is that the 1) As the ROM matches thigh Markov-type parameters; in (8),
following inequality holds: it also matches th&h Markov parameters.

(i Byin) < (w Werr). 1) 2) Itis well known that the high-frequency behavi_or is related_to
ot Tt ot Tty . Markov parameters and the low-frequency one is related to time

Hence, it is seen from (16) that the only nonzero entr{)gf is pos- moments. Therefore, a GIRG with ~ 0 is expected to give

itive, which implies that the right-hand side of the Lyapunov (15) is a better approximation at high frequencies than a GIRG with

a positive-semidefinite matrix. Then, the characteristic polynomial of ¢ ~ —r + 1. Note that the original DC-gain is preserved for

fiq cannot have any zeros outside the unit circle, and, moreover, if ¢ # 0.

{A,. &} is observabled, is asymptotically stable. - 3 The_present algorithm is easy to imp!em_ent usi_ng a standard nu-
Remark 2: Proof of Theorem 3.1 reveals an important difference ~ Merical software (e.g., thelaTLAB script is ten lines long and

between the discrete case and the continuous case considered in [15], @vailable upon request to the authors).

in which Gramians are defined using operatgfsand/ord/dt. Here,

the right-hand side of the Lyapunov (15) that solvesieorder prin-

cipal submatrice of the original GIRG is not only composed from the IV. EXAMPLE

parameters; orAmﬁ; of the original realization in (7), because of the o _ o

additional teer;r. Numerous examples have been studied in [17] to verify the validity

The controllability of the obtained ROM is now established in th8' Previous results. . o
following theorem. Consider now the seventh-order transfer function of a supersonic jet

Theorem 3.2: Provided tha, (1) # 0, the rth-order ROM(AL, engine inlet proposed by Lalonde in [18] as shown in (22a), at the top
5 of the next page.
With this model, the characteristics of any order reduction technique
clearly highlighted by comparing the ROM frequency response with

~

by, ¢4) is controllable.
Proof: Let j,(z) be the characteristic polynomial for the statgg

matrix A, andp, (=) = 3>1_; @iz" ' = pq(z+1). Becaused, has  the original response, which is characterized by peaks at distinct fre-
the same structure as in (6), it is clear thdt, — I) is a companion quencies.
matrix. Now, it is seen that Using our GIRG-based technique of the previous section yvith
= 2 _ [aye, if » odd —1, we get the following five-order model (GIRGS5) as shown in (22b),
det [C { (Aq B [) ’ bq}] N { (=)~ TG if ¢ even at the top of the next page.
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2.0434:% — 4.98252" 4+ 6.572" — 5.81892% + 3.6362% — 1.4105z + 0.2997 (222)
T 27T — 2.4626 + 3.43325 — 3.3332% 4 2.54602% — 1.58422 + 0.7478z — 0.2520
~ : 34:% — 3.08422° . 2% — 1.4130z T
2.0434 3.08422% + 2.1696 1.4130z 4 0.7100 (22)

T 25 —1.53102% 4 1.25942% — 0.977022 4 0.6962z — 0.3241

To measure the approximations, consider the error crifgfia=
llell3, e[k] = y[k] — §[k]}, wherey[k] andg[k] are the responses of the
original and reduced-order model, respectively. For impulse responseﬁj]
the criteria is usually normalized’ = Q/||||3.

Table | compares GIRG5 with models derived through balanced real-
ization (BR5, see [13]), WIRGS5 (see [2]) and least-squares with scalinil2]
(LS5S5, see [18]).

Models BR5 and WIRG5 give the best approximations from the 13]
point of view of the impulse response, but their step responses are not
acceptable. Model LS5S5 provides a reasonable impulse response and
a close approximation of the original step response. Model derived bit4]
GIRG exhibits good behavior on both impulse and step responses (the
DC-gain is retained). The Bode plots of the original and reduced-ord 15]
models (WIRG5, LS5S5, GIRG5) are shown in Figs. 1 and 2. Smal
reduction errors are obtained with model GIRG5 at high frequencies
and low frequencies, as well as middle frequencies. [

(10]

V. CONCLUSION [17]

A new impulse response Gramian has been introduced for linear,
time-invariant, asymptotically stable, discrete SISO systems. Itis easily g]
obtained by solving a Lyapunov equation for a particular realization,
and it is connected to standard Gramians. It has been further shown that
it contains information about the characteristic polynomial. A model[1
reduction method based on these properties has been proposed. The
rth-order ROM is chosen in a setofolutions: the poles are first com-
puted through a minimization ofia error criteria and then we match
some Markov parameters or time moments. This ROM cannot have any
poles outside the unit circle and is asymptotically stable and minimal
provided it is observable. This method can ensure a close approxima-
tion for a given frequency range. As shown by the numerical example,
the proposed solution compares well with those obtained with other
techniques.
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Closed-Form Control Laws for Linear
Time-Varying Systems

Ping Lu

Abstract—Closed-form control laws are developed for continuous, linear,
Ime-varying (LTV) systems based on approximate solutions to a receding-

" horizon control problem. These control laws can be derived in the first- or
igher order closed forms. Once obtained, the control laws need no explicit
ain-scheduling or online integrations to implement. The notion of prac-
tical stability is used, and practical or uniform asymptotic stability of the

([-‘{ sed-loop system, depending on conditions imposed on the system, is es-
tablished.

) o ) Index Terms—Linear time-varying systems, optimal control, quadratic
D. A. Wagie and R. E. Skelton, “A projection approach to covariancgrogramming, receding-horizon control.

|. INTRODUCTION

Relatively few methods for controller design have been available
to stabilize a linear, time-varying (LTV) system. The contrast is par-
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