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Abstract

Direct sequence spread spectrum transmissions (DS-SS) are now widely used for secure
communications, as well as for multiple access. They have many interesting properties,
including low probability of interception. Indeed, DS-SS transmitters use a periodical
pseudo-random sequence to modulate the baseband signal before transmission. A receiver
which does not know the sequence cannot demodulate the signal.
In this paper, we propose a new method which can estimate the spreading sequence

in a non cooperative context. The method is based on eigenanalysis techniques. The
received signal is divided into windows, from which a covariance matrix is computed. We
show that the sequence can be reconstructed from the two first eigenvectors of this matrix,
and that useful information, such as desynchronisation time, can be extracted from the
eigenvalues.
The main achievement of the present paper is a performance analysis of the proposed

spreading sequence estimation procedure. An analytical approach is first considered owing
to matrix perturbation theory and Wishart matrix properties. Then, complementary
Monte Carlo simulations are performed to show the effectiveness of the proposed method.

Key Words : Digital communications, Direct Sequence Spread Spectrum, Blind Estima-
tion, Performance analysis, Wishart matrix, Gold sequence.

1. Introduction

Spread spectrum transmissions have been in practical use since the 1950’s. They found many
applications in military systems due to their suitability for covert message transmission and
resistance to jamming [1]. In the early 1980’s, spread spectrum technology was proposed for
private and commercial use, especially in Code Division Multiple Access ( CDMA ) transmis-
sions. CDMA system has been adopted for use in commercially available wireless local area
networks (WLAN’s) [2]. Another useful feature of CDMA for indoor systems is its low power
spectral density. This allows a CDMA system to coexist with licensed communications systems
in environments where low levels of electromagnetic interference are desirable, such as hospital.
In such environments, CDMA is ideally suited to high data rates being transmitted over hostile
fading channels with the minimum of interference to sensitive equipments [3].
DS-SS is a transmission technique in which a pseudo-random sequence or pseudo-noise (PN)

code [4], independent of the information data, is employed as a modulation waveform to spread
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the signal energy over a bandwidth much greater than the information signal bandwidth [5].
In practical systems, the bandwidth expansion factor, which is the ratio between the chip rate
FC and the data symbol rate FS, is usually an integer. The amplitude, and thus the power
in the spread spectrum signal, is the same as in the information signal. Due to the increased
bandwidth of the spread spectrum signal, the power spectral density must be lower and can
then be below the noise level [6]. Furthermore, the autocorrelation of a PN code has properties
similar to those of white noise, so the spread spectrum signal looks like a white noise, hence it is
very difficult to intercept. At the receiver, the signal is despread using a synchronized replica of
the pseudo-noise sequence used at the transmitter. The optimum multiple user CDMA receiver
is based on a correlator, or a bank of sequence matched filters, each followed by maximum
likelihood sequence estimation detectors (MLSE). The objective of the MLSE is to find the
input sequence that maximizes the conditional probability, or likelihood of the given output
sequence [7].
In the context of spectrum surveillance, the pseudo-random sequence used by the transmitter

is unknown, as well as other transmitter parameters such as duration of the sequence, symbol
frequency and carrier frequency. Moreover, the longer the period of the pseudo-noise code is,
the closer the transmitted signal will be to a truly random binary wave, and the harder it is to
detect [8]. In this context, only Tsatsanis et al. [9] have proposed a reliable method to recover
the convolution of the spreading sequence and the channel response in multipath environment.
Their approach uses a multichannel identification technique due to Moulines et al. [10], where
the orthogonality property between the signal and noise subspaces is exploited to yield the
desired estimate.
In this paper, we propose a new method for estimating the pseudo-random sequence without

prior knowledge about the transmitter. Our procedure does not rely on a multichannel frame-
work and is computationally less expensive than that of Tsatsanis et al. The received signal is
sampled and divided into temporal windows, the size of which is the pseudo-random sequence
period, which is assumed to have been estimated. We prove that the spreading waveform can
be recovered from the first and second eigenvectors of the sample covariance matrix. This
property provides a simple way to estimate the pseudo-random sequence used at the transmit-
ter. Furthermore, useful information about desynchronisation time can be extracted from the
eigenvalues. In order to prove the reliability of the proposed technique, we analytically explore
the statistics of the eigenparameters estimators, under a small perturbation assumption on the
received signal covariance matrix. Numerical simulations are also proposed to complete this
performance analysis and to show that the technique performs well in a multipath environment,
even at low signal to noise ratio (SNR).
The paper is organized as follows. In Section 2, we give the notations, the hypotheses and

we describe our spreading sequence estimation technique. Then, numerical experiments are
given in section 3 to illustrate the method in multipath environment. Section 4 is devoted to a
performance analysis of our algorithm. Finally, conclusions are drawn in section 5.

2. Problem formulation

In a direct sequence spread spectrum transmission, a pseudo-noise code generated at the mod-
ulator is used in conjunction with an M-ary Phase Shift Keying (PSK) modulation to shift the
phase of the PSK signal randomly at the chip rate FC , a rate that is an integer multiple of the
symbol rate FS. The bandwidth of the transmitted signal is determined by the chip rate.
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2.1. Notations and hypotheses

Let ak be a QPSK or BPSK symbol transmitted at time kTS, where TS is the symbol duration.
This symbol is multiplied by a pseudo-random sequence of chip duration TC , which spreads the
signal bandwidth. This discrete signal is then filtered, sent through the communication channel
and filtered again at the receiver side. The resulting baseband signal is given by :

y(t) =
+∞X
k=−∞

akh(t− kTS) + n(t) (2.1)

where n(t) is the noise at the output of the receiver filter, and h(t) encompasses the effects
of the transmission filter, reception filter, channel response and the pseudo-random sequence :

h(t) =
P−1X
k=0

ckp(t− kTC) (2.2)

where p(t) denotes the convolution of all the filters of the transmission chain and {ck}k=0···P−1,
is the pseudo-noise sequence of length P .
The chip duration TC can be chosen such as .
Throughout the sequel, the hypotheses below will be assumed :
- The symbols are centered and uncorrelated;
- The noise is AWG (Averaged White Gaussian) and uncorrelated with the signal;
- The signal to noise ratio (SNR, in dB) at the output of the receiver filter is negative, i.e.

the signal is hidden in the noise;
- The symbol period TS is equal to the spreading code period, that is TC = TS/P ; Its

estimation is achieved in a pre-processing step, owing to the method proposed in [11] for
example.
All other parameters are unknown.

2.2. Overview of the presence detection of direct-sequence spread spectrum signals
(pre-processing step)

The basic principle of any intercept receiver is to take profit of the fact that the transmitted
signal statistical properties are not the same as the noise statistical properties. For instance,
in some simple applications, the signal and noise frequencies are not the same, hence filters
are sufficient to detect the presence of a signal. Here, the application is much more complex,
because a spread spectrum signal is specially built to be similar to a noise, in order to have a
low probability of intercept (remind that spread spectrum was initially developed for military
applications). For instance, the autocorrelation of a spread spectrum signal is close to a Dirac
function, as well as the autocorrelation of a white noise (this is due to the pseudo-random
sequence).
Our intercept receiver acts in two major steps : first the presence of any DS-SS transmission

is detected and then we proceed to blind spreading sequence estimation before demodulation.
The present paper focus on performance analysis of the second step. The pre-processing step,
which is detailed in a recent paper [11] and briefly overviewed in this paragraph, also leads to
an accurate spreading code period estimate which is then used in the rest of the algorithm.
The pre-processing step relies on the fluctuations of autocorrelation estimators, instead of

on the autocorrelation itself. Although the autocorrelation of a DS-SS signal is similar to the
autocorrelation of a noise, it is proved in [11] that the fluctuations of estimators are totally
different.
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In order to compute the fluctuations, the received signal y(t) is divided into M non-
overlapping temporal windows, each of duration T large enough to contain a few symbols.
Then an autocorrelation estimator is applied to each window :

dRmyy(τ ) = 1

T

Z tm+T

tm
y(t) y∗(t− τ) dt , m = 1, ...,M (2.3)

Using the whole set of windows, we can then estimate the second order moment of this
autocorrelation estimator :

ρ(τ ) =
1

M

MX
m=1

¯̄̄dRmyy(τ)¯̄̄2 (2.4)

By comparing the theoretical fluctuations of ρ(τ ) in case of a ”noise-only” hypothesis to
that obtained by computation from the incoming signal, we can detect the presence of any
DS-SS transmission.

Fig. 1 - Example of DS-SS signals detector output (Gold code of length 31 at a chip rate Fc
of 40 MHz in a Gaussian channel with SNR of -5 dB)

This result is illustrated by figure 1 where the fluctuations of ρ(τ ) are plotted. The horizontal
line show the theoretical average fluctuations m(n)

ρ and the crosses correspond to the theoretical

average fluctuations plus 4 times the theoretical standard deviation σ(n)ρ on the fluctuations

(”noise-only” hypothesis). Large peaks that are observed, far above m(n)
ρ + 4σ(n)ρ , indicate the

presence of a DS-SS signal. These peaks are obtained for values of τ which are multiples of the
spreading code period (0.775 µs for this example).

2.3. Blind estimation of the spreading sequence

Eigenanalysis techniques are exploited to recover the spreading sequence used at the transmit-
ter. A first version of this approach, based on principal components analysis, was described in
[12]. A second one, employing neural networks, was explained in [13]. In this paper we will
focus on principal components analysis method.
The received signal is sampled and divided into non overlapping windows, the duration of

which is TS. Let us note y the content of a window. We can define the covariance matrix :

R = E
n
y.yH

o
(2.5)
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where H denotes the Hermitian transpose.
Since the window duration is equal to the symbol duration, a window always contains the

end of a symbol for a duration TS − t0, followed by the beginning of the next symbol for a
duration t0, where t0, the desynchronisation between a window and a symbol is unknown.
Hence we can write :

y = amh0 + am+1h−1 + n (2.6)

where n stands for the noise; h0 is a vector containing the end of the spreading waveform
for a duration TS − t0, followed by zeroes for a duration t0; h−1 is a vector containing zeroes
for a duration TS − t0, followed by the beginning of the spreading waveform.
The equation above then leads to the following expression for the covariance matrix (2.5) :

R = E
n
|am|2

o
h0.h

H
0 + E

n
|am+1|2

o
h−1.hH−1 + σ2nI (2.7)

From this equation it is clear that two eigenvalues will be larger than the others. The
corresponding eigenvectors will be equal to h0 and h−1, up to multiplicative factors.
The eigenvalues can be expressed in decreasing order according to the period symbol TS,

the SNR ρ, the sampling period Te and the noise variance σ
2
n [12]:

λ1 =
³
1 + ρTS−t0

Te

´
σ2n

λ2 =
³
1 + ρ t0

Te

´
σ2n

λi = σ2n , ∀ i ≥ 3

(2.8)

The mathematical expressions of the two first eigenvalues must be exchanged if t0 >
TS
2
.

The spreading sequence can then be recovered, once the corresponding normalized eigen-
vectors v0 =

h0
kh0k2 and v−1 =

h−1
kh−1k2 are concatenated.

Besides, it has been shown in [12] that the desynchronisation time t0 and the SNR ρ can be
estimated from (2.8) : 

bρ = ³
λ1+λ2
σ2n
− 2

´
Te
TS

bt0 = Tebρ ³ λ2
σ2n
− 1

´ (2.9)

In fact, the covariance matrix cannot be exactly defined, but only estimated by the sample
covariance matrix :

cR = 1

N

NX
m=1

ym.y
H
m (2.10)

where N is the number of temporal windows of duration TS .
The performance of the estimation of the spreading sequence will therefore depend on the

number N besides the SNR. In the sequel we will suppose the sampling period is set to Te = TC ,
to make the interpretation of the results easier, but this is not a requirement. In this case the
covariance matrix is a P ×P complex matrix, where P is the length of the spreading sequence.
To illustrate our algorithm, computer simulations will be given in the next section, to show

the method can provide a good estimation of the spreading sequence, even when the received
signal is far below the noise level.
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3. Numerical examples - Comparison

In this section, we provide representative comparisons of our approach with the method de-
scribed in [9]. An example also illustrates the feasibility of our solution in multipath environ-
ment.

Example 1. .

The goal of this example is to show that our method is a good alternative to the algorithm
proposed in [9], whose computational cost is higher due to its matrix dimensionality.
For illustration purposes, we consider a spread spectrum signal generated by spreading a

QPSK modulation with a Gold sequence of length 31 (Fig. 2). For comparison the method of
[9] is computed when multipath is absent. In this particular case, only the blind estimation of
the spreading code used by the transmitter is performed. AWG noise is added to the received
signal with SNR = −5 dB. Both algorithms have been used with N = 200 analysis windows.
We assume also, the length of the spreading code P and the chip period TC are known as
needed by subspace method with multichannel framework, although these hypotheses are not
required by our algorithm.

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

Time in chip periods

True sequence

Fig. 2 : Gold sequence

The figures below show the estimated sequence by subspace method with multichannel
framework (Fig. 3) and by our eigenanalysis technique (Fig. 4), when a desynchronisation
time t0 = 8 chips is present.
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First eigenvector
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Second eigenvector

Fig. 3 : Subspace method Fig. 4 : The proposed approach
with multichannel framework

The eigenanalysis of cR shows there are two large eigenvalues as demonstrated in section
2. Once the desynchronisation time has been estimated according to the eigenvalues (2.9), it
is possible to determine which eigenvector contains the beginning of the spreading sequence
and which one the end. At the top of the Fig. 4, the first eigenvector is drawn, it contains
the end of the spreading sequence during (TS − t0) followed by zeroes during t0, where t0 is
equal to 8 chips, while the second eigenvector at the bottom of Fig. 4 contains zeroes during
(TS − t0) followed by the beginning of the spreading code during t0. The eigenvectors can then
be concatenated to recover the spreading code used at the transmitter.

Example 2. Results in multipath environment

A Monte Carlo simulation is conducted to evaluate the performance of the proposed method
in a multipath environment. A DS-SS signal is generated using a random sequence of length
P = 31. The symbols belong to a BPSK constellation. The spreading sequence is shown in
Fig. 5. The signal is then transmitted through a multipath channel, with the following impulse
response :

h(t) = 1.2− 0.8 δ(t− TC) + 0.6 δ(t− 2TC)

The channel impulse response is depicted in Fig. 6, and the overall response, i.e. the convolution
of the spreading code and the channel impulse response, can be seen in Fig. 7. AWG noise
is added to the received signal with SNR = −10 dB, the top of Fig. 8 shows an example of
the first transmitted BPSK chips and the bottom, the received chips corrupted by the noise.
To verify the efficiency of our algorithm, the combined response of the spreading code with the
channel impulse response has been estimated across a 100 runs Monte Carlo simulation, with
N = 200 analysis windows.
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Fig. 5 : Spreading code Fig. 6 : Channel impulse response
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Fig. 7 : Overall impulse response Fig. 8 : Transmitted and Received chips

Fig. 9 below shows the true overall impulse response (’o’), as well as the mean of the
100 runs (’*’) and the standard deviation. The estimated response is clearly seen to be in
accordance with the true one.

0 5 10 15 20 25 30 35
-3

-2

-1

0

1

2

3

Time in chip periods

Impulse response

True
Mean of the 100 runs
+/- Standard Deviation

Fig. 9 : Monte Carlo results on estimated impulse response
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The estimated impulse response can then be used by a classical receiver in order to recover
the transmitted information from the received data.
Nevertheless, when estimating the sample covariance matrix, an error ∆R is made [15],

which in turn induces an error in the estimated eigenvalues and eigenvectors. To complete our
results, we have to pick out the effects of the perturbation on the eigenvalues and eigenvectors
due to the estimation of the covariance matrix.

4. Performance evaluation

In order to demonstrate the performance of the proposed method, compact expressions for the
variance and bias of the estimates of the eigenvalues and eigenvectors {λk,uk} will be derived
in the following. As a first step, each estimation error {∆λk,∆uk} will be written as a Taylor
expansion of the elements of ∆R using well-known results from matrix perturbation theory.
Then, as the sample covariance matrix follows a complex Wishart law, a statistical analysis
of {∆λk,∆uk} will be achieved owing to Wishart matrix properties [16], [17]. Similar studies
have been previously carried out in the domain of high-resolution Direction-Of-Arrival (DOA)
techniques [15], [18], [19].
Note that it is not the unique approach to solve our performance analysis problem. In the

noise only case ( AWGN), the joint eigenvalue distribution of a complex Wishart matrix is
known [20], and use of zonal polynomials [21] even yields the distribution of each eigenvalue in
a closed form. However, as noted by [22] in a different context, this gives intractable results for
the moment. In the sequel the approach of [15] has been preferred, due to its simplicity and
the standard matrix formalism required.

4.1. Theoretical analysis

As exposed in the previous section, our algorithm yields the spreading sequence through an
eigenvalue decomposition of the sample covariance matrix (2.10).
As the random data set {ym}m=1,...,N is composed from complex Gaussian, circular, inde-

pendent vectors, cR is distributed according to a complex Wishart law [17].
Denote ∆R the small Hermitian perturbation on R due to finite number of temporal win-

dows N :
∆R =cR−R (4.1)

Then, the expected eigenparameters {λk,uk} of R are changed into

λ̂k = λk +∆λk (4.2)

ûk = uk +∆uk (4.3)

with the following orthogonality constraint on eigenvectors :

uHk ∆uk = 0 (4.4)

Remark 1. The perturbation results derived throughout the sequel will be only valid for simple
eigenvalue case of the covariance matrix R (and for associated eigenvectors). This is not a
problem since the spreading sequence information is carried by the first two simple eigenvalues,
in a decreasing order. Hence, the values for subscript k will be 1 or 2 if a desynchronisation
between windows {ym}m=1,...,N and symbols exists and k = 1 in the synchronized case. For a
detailed discussion about matrix perturbation theory see [23] for example.
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A statistical analysis of perturbations {∆λk,∆uk} has now to be performed in order to
check our algorithm efficiency. The following theorem, stated by Krim et al. [18], provides a
relation between these perturbation terms and ∆R. Let {δnλk, δnuk} be the nth order terms
of the Taylor expansion of perturbations {∆λk,∆uk}, respectively :

∆λk = δλk + δ2λk + ...+ δnλk + ... (4.5)

∆uk = δuk + δ2uk + ...+ δnuk + ... (4.6)

Theorem 4.1. Then, by recurrence we have :
First order terms,

δλk = uHk ∆Ruk (4.7)

δuk = S†k∆Ruk

Higher order terms (n > 1),

δnλk = uHk ∆Rδn−1uk (4.8)

δnuk = S†k∆Rδ
n−1uk −

n−1X
l=1

δn−lλkS
†
kδ
luk

where
Sk = λkI−R (4.9)

and S†k is its pseudo-inverse :

S†k =
PX

i=16=k

1

(λk − λi)
uiu

H
i (4.10)

The next properties, due to Wishart distribution of cR, will be of central importance to
derive the statistics (mean and variance) of the eigenparameters perturbations. Proofs of these
properties can be found in multivariate statistics literature such as [16] or [17].

Proposition 1.
1. The estimation error (4.1) satisfies :

E{∆R} = 0 (4.11)

E{∆R(i, j)∆R(i0, j0)} = 1

N
R(i, j

0
)R(i0, j) (4.12)

2. For any P × P complex matrix A :

E{∆R A ∆R} = 1

N
tr(RA)R (4.13)

Owing to these relations, approximate expressions for the moments of the estimators {λ̂k, ûk}
are easily derived, as stated in the next propositions. The mean is obtained by truncating the
Taylor expansion (4.5) up to the second order. For the variance, a first order truncation is seen
to be sufficiently accurate, as shown in the next subsection by Monte Carlo simulations.
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Proposition 2. The expansions (4.5) and (4.6) used up to the second order yields the following
approximate expressions for the first moment of the estimators (4.2) and (4.3) :

E{λ̂k} = λk

1 + 1

N

PX
i=16=k

λi
λk − λi

 (4.14)

E{ûk} = uk (4.15)

Proposition 3. The expansions (4.5) and (4.6) used up to the first order yields the following
approximate expressions for the second moment of the estimators (4.2) and (4.3) :

var(λ̂k) =
λ2k
N

(4.16)

cov(ûk) =
λk
N

PX
i=16=k

λi

(λk − λi)
2uiu

H
i (4.17)

It should be mentioned now that the spreading waveform is estimated up to an unknown
multiplicative factor. This is not a problem because in any transmission system, the channel is
modeled by at least an unknown multiplicative factor. Hence, this uncertainty is also included
in the channel model. This is why transmission systems use either differential coding, or
periodically occurring known symbol sequences, in order to remove this uncertainty.
Hence we have : bu1 = z u1 +∆u1 (4.18)

where z is the unknown multiplicative factor. Since this uncertainty is present in any
transmission system, we can replace zu1 by u1, when our purpose is the evaluation of the
performances of our method. Indeed, it is ∆u1, and not z, which represents the quality of the
estimator.
Since the demodulator uses a correlator to recover the data symbols, a good criterion to

evaluate the quality of the estimated sequence is its normalized scalar product with the sequence
:

C(û1,u1) = ûH1 u1
kû1k ku1k (4.19)

where u1 is the true sequence, û1 is the eigenvector corresponding to the largest eigenvalue.
Note that symbol synchronisation has been assumed above to simplify the presentation.

Proposition 4. An approximate expression for the first moment of C(û1,u1) is

E{C} = 1− 1
2

λ1
N

PX
i=2

λi

(λ1 − λi)
2 (4.20)

Proof. Because u1 is a normalized vector orthogonal to ∆u1, it is clear that

C(û1,u1) = 1

kû1k =
1

[tr{û1ûH1 }]1/2

Then, it is straightforward to see that

tr{û1ûH1 } = ûH1 û1 = 1 +∆uH1 ∆u1
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Assuming that ∆uH1 ∆u1 ¿ 1, we obtain the following expression by truncating the series
expansion up to the first order:

C(û1,u1) = 1− 1
2
∆uH1 ∆u1

Finally, replacing ∆u1 by its first order approximation (4.7) yields the desired relation
(4.20).

4.2. Verification by Monte Carlo simulations

Numerical simulations are now proposed in order to confirm the effectiveness of our algorithm
in practical situations.
It should be noted that all the previous analytical approach is based on various approxima-

tions : The signal covariance error ∆R has been assumed to be small in norm, which means
that we have only considered the asymptotical case (N → ∞). Also, other errors are caused
by various Taylor series truncations when evaluating means or covariances.
Moreover, it is interesting to study the performance degradation in estimating the spreading

sequence when only a short data record, i.e. a small number of windows N , is available.
In the following example, we show a comparison between the approximate analytical eigen-

value distribution ( 4.14 and 4.16) and the same distribution derived by Monte Carlo simula-
tions, for various sizes of samples set N and a fixed SNR.

Example 3. We compute a QPSK signal spread by a Gold sequence of length 31, corrupted
by a AWG noise with SNR = −5 dB. The symbol synchronisation is assumed here for the
purpose of illustration, but this is not a requirement for the above analytical results to be valid.
In this case, the signal information is exclusively carried by the first eigenvalue . Fig. 10 depicts
the true eigenvalue (’o’) and the average estimation (’+’) predicted by equation (4.14) ± the
standard deviation predicted by equation (4.16). In Fig. 11, the average eigenvalue (’∗’) ±
the standard deviation is plotted across a Monte Carlo simulation consisting of 500 runs. It is
clearly seen that our analytical results (Fig. 10) compare well with those obtained with Monte
Carlo experiments (Fig. 11); we can note that the theoretical second order moment (4.16) tends
to be overestimated but as will be seen on the next figure this will not affect the prediction of
the spreading code estimate accuracy. Another observation is that to get a correct estimation
of the eigenvalues/eigenvectors and as a consequence a correct estimation of the spreading code,
about 150 analysis windows are required (for a SNR of -5 dB).
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Fig. 10 : Analytical distribution Fig. 11 : Monte Carlo simulations
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The next example is proposed to evaluate the average error in estimating the spreading
sequence for different values of {N, SNR}.

Example 4. We consider a QPSK modulation again, spread by a Gold sequence of length
31. Criterion (4.19) is chosen as the mean to reflect the efficiency of the spreading sequence
estimation. Fig. 12 shows the mean of the normalized scalar product of the estimated sequence
with the true one (’∗’) predicted by equation (4.20), as well as the average value (’o’) obtained
via 100 runs of a Monte Carlo simulation.
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Fig. 12 : Quality of the estimated sequence evaluation owing to the criterion C
From this figure, we can have an idea of the number of windows N and the SNR from

which a good accordance between the estimated sequence and the true one can be reached.
Another way to bring out our results is to check the average number of sign errors between

the true sequence and the estimated one. A 100 runs experiment has been done with a fixed
number of temporal windows N = 200. The tables below show the percentage of sign errors
versus the SNR in dB, when the signal is well synchronized (Table 1), as well as those obtained
if a desynchronisation time t0 = 8 chips is present (Table 2).

SNR (dB) -16 -15 -14 -13 -12 -11 -10 -9 -8
Sign errors (%) 1.33 0.4 0.15 0.05 0.01 0 0 0 0

Table 1 : Percentage of sign errors in the spreading sequence versus SNR (synchronized case)

SNR (dB) -16 -15 -14 -13 -12 -11 -10 -9 -8
Sign errors (%) 4.1 2.7 1.37 0.9 0.45 0.13 0.01 0 0

Table 2 : Percentage of sign errors in the spreading sequence versus SNR (desynchronized case)

We can draw a parallel between Fig. 12 and Table 1 when the number of windows is fixed
to N = 200, to confirm the conclusions.
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For comparison, the tables below present the performances of the subspace method with
multichannel framework [9], in the same conditions as above. It is clearly seen that our algo-
rithm is a good alternative, with a lower computational cost.

SNR (dB) -16 -15 -14 -13 -12 -11 -10 -9 -8
Sign errors (%) 1.2 0.33 0.15 0 0 0 0 0 0

Table 3 : Percentage of sign errors in the spreading sequence versus SNR (synchronized case)

SNR (dB) -16 -15 -14 -13 -12 -11 -10 -9 -8
Sign errors (%) 2.32 0.73 0.34 0.17 0.02 0 0 0 0

Table 4 : Percentage of sign errors in the spreading sequence versus SNR (desynchronized case)

5. Conclusion

The blind spreading sequence estimation problem in a DS-SS transmission system has been
considered in this paper. The proposed algorithm is very easy to implement and requires a
limited computational cost since it is based on a single eigenvalue decomposition of the received
signal sample covariance matrix. This process also enables the estimation of parameters such as
SNR or desynchronisation time. A performance analysis has been investigated. An analytical
approach shows the efficiency of the proposed estimators asymptotically. By complementary
Monte Carlo simulations it is seen that a good performance can even be achieved for a moderate
length of the data record and a low SNR. No hypothesis was assumed on the nature of the
spreading sequence : it can be a sequence generated by pseudo-random shift registers, such as
Gold sequences, but this is not a requirement. Once estimated, the sequence can be used by a
traditional spread spectrum receiver in order to retrieve the information symbols.
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