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ABSTRACT 
 

Throughout the whole food processing and distribution chain, 

an accurate assessment and control of microbiological food 

safety is indispensable to avoid large outbreaks of foodborne 

diseases. For this reason, mathematical models are developed 

in predictive microbiology to describe the growth and survival 

of food spoiling and pathogenic microorganisms as a function 

of the environmental conditions during food processing and 

distribution. 

Traditionally, these models are representative for the 

planktonic growth of axenic microbial cultures in perfectly 

mixed liquid media. However, most food products are 

characterised by a semi-solid structure, where the 

contaminating cells grow out as colonies. Diffusion 

limitations emerge in these colonies due to the high local cell 

density. Hence, it is most appropriate to simulate microbial 

colonies at a microscopic level, considering the cell as basic 

modelling unit in an individual-based modelling approach. 

Within this respect, the MICRODIMS model has been 

developed at the BioTeC+ research group. However, over the 

last years, it became clear that the implementation of this 

individual-based model in the standard Repast Simphony 

toolkit is rather slow for the simulation of mature colonies 

containing a large number of cells. For this reason, 

MICRODIMS has been ported to the TransProg library, which 

uses modern general-purpose multicore and multiprocessor 

computers to their fullest potential. 

This transfer enables the simulation of mature colony 

dynamics in three dimensions. In this paper, the branched 

morphology of colonies growing on the surface of a food 

substrate is investigated. It is demonstrated that the emergence 

of this pattern is dependent on the thickness of the food 

substrate and structural heterogeneities at the food surface. 

 

INTRODUCTION 
 

Over the last decades, significant progress has been achieved 

in the predictive modelling of microbial pathogen behaviour 

in food products (McMeekin et al. 2008). These mathematical 

models are used to quantitatively link microbial hazard levels 

in food processing companies and the contamination levels to 

which consumers are exposed, in order to assess the risk of 

food poisoning. 

Traditionally, models in predictive microbiology are based on 

experiments of axenic microbial populations in 

homogeneously mixed liquids. In these liquid media, the 

population dynamics are the result of the corporate behaviour 

of free-swimming cells that are barely interacting with each 

other and exposed to more or less the same environmental 

conditions. For this reason, it is reasonable to consider the 

integral population as a continuous modelling unit, allowing 

for a noncomplex description of the population dynamics by 

means of a limited set of coupled differential and/or algebraic 

equations – see, e.g., (Baranyi and Roberts 1994). 

However, most food products exhibit a semi-solid structure, 

limiting the mobility of contaminating pathogenic 

microorganisms. Hence, colonies of related organisms emerge 

from the initial contaminating cells on the food surface 

(Wimpenny et al. 1995). In these surface colonies, 

overconsumption of nutrients/oxygen and secretion of weak 

acid cell products lead to chemical gradients in the colony 

environment due to diffusion limitations. Ultimately, this 

results in nutrient or oxygen depletion and a pH drop in the 

colony. In other words, the growth of the colony is inhibited 

through the creation of adverse conditions by the collective 

behaviour of its constituting cells. 

Due to the chemical gradients in and around mature colonies, 

the colony cells exhibit strongly different metabolic 

behaviours according to their position along the colony radius. 

Therefore, the most appropriate modelling unit is the 

individual microbial cell. This modelling approach is in line 

with the individual-based modelling (IbM) paradigm, where 

the dynamics of the considered multiagent system implicitly 

emerge from the simulated behaviour and interactions of its 

constituting individuals. The IbM approach facilitates the 

incorporation of microscopic knowledge about the microbial 

cells and heterogeneities in the food structure. However, the 

simulation of the behaviour and interactions of each 

individual cell leads to long simulation times for mature 

colonies containing millions of cells. 

Over the last two decades, individual-based models have been 

developed for the simulation of microbial colony behaviour, 

starting with the BacSim model of Kreft et al. (1998) and the 

INDISIM simulator of Ginovart et al. (2002a). BacSim is an 

extension of the Gecko ecosystems simulator which is also 

used for, e.g., the simulation of spider or tree populations 

(Booth 1997), implying that BacSim contains a myriad of 

superfluous functionality compromising its performance and 

clarity (Dens et al. 2005; Standaert 2007). For this reason, a 

new individual-based model, MICRODIMS, has been 

developed in the BioTeC+ research group and implemented in 

user-friendly software toolkits like NetLogo (Wilensky 1999), 

Repast Simphony (North et al. 2013), and MASON (Luke et 

al. 2003). However, it became clear that for mature colonies 

the simulation time increased heavily due to the large number 

of spatial interactions between the colony cells. Therefore, the 

MICRODIMS model has been ported to the TransProg library 
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in order to make use of modern general-purpose multicore and 

multiprocessor computers to their fullest potential (Harrouet 

2012). 

This transfer enables the simulation of mature surface colony 

dynamics in three dimensions, as elaborated in this paper. 

More specifically, this paper focuses on the formation of 

branched colony morphologies in nutrient-limited colonies. 

The influence of the food substrate thickness and food surface 

inhomogeneities on the colony morphology are investigated. 

 

MATERIALS AND METHODS 
 

The relevance of the considered microorganism is explained 

in this section. In addition, the MICRODIMS model and its 

TransProg-based revision are described in more detail. 

 

Considered Model Organism 

 

In this work, Escherichia coli K-12 MG1655 is used as the 

simulated microorganism. This nonvirulent E. coli substrain 

is frequently applied in experimental studies as a model 

organism for pathogenic strains of E. coli and Shigella 

(Hayashi et al. 2001; Jin et al. 2002). Infection with these 

pathogenic strains can result in severe gastrointestinal 

disorders, kidney failure, and even death. Pathogenic E. coli 

strains are particularly dangerous for young, elderly, and 

immunity-compromised people. Moreover, treatment with 

antibiotics increases the risk of haemolytic uraemic syndrome 

(HUS) and renal failure (Wong et al. 2000; Tarr et al. 2005). 

In the US, the annual cost of Shiga toxin-producing E. coli 

(STEC) infections amounts to hundreds of millions of dollars 

(Frenzen et al. 2005; Economic Research Service, USDA 

2014). 

As a facultative anaerobic organism, E. coli can survive on a 

wide variety of nutrition sources both in the presence and 

absence of oxygen, increasing the risk of proliferation in food 

products. In this paper, only aerobic colony dynamics are 

considered, as described in Tack et al. (2015a), eliminating the 

possibility that weak acid cell products are secreted into the 

environment as a result of the mixed acid fermentation 

metabolism of E. coli. 

 

Model Description of MICRODIMS 
 

The MICRODIMS model has been described in full detail in 

previous publications (Tack et al. 2014; Tack et al. 2015a). It 

considers two kinds of agents: the microbial cells and the food 

substrate. This food substrate is divided in discrete units to 

simulate diffusion processes of glucose through the food 

system. The implementation of this diffusion process is 

explained in the next section. 

Diffusion of glucose through the environment is caused by 

glucose uptake of the colony cells from their local 

environment. This glucose uptake is used for cell growth and 

maintenance purposes, and is modelled by means of the 

Monod kinetic model (Monod 1942): 

 

𝑣𝑘,(𝑖,𝑗) = 𝑣𝑘,max ∙
𝐶𝑆,(𝑖,𝑗)

𝐾𝑆+𝐶𝑆,(𝑖,𝑗)
=

𝜇𝑘,max

𝑌𝑋/𝑆
∙

𝐶𝑆,(𝑖,𝑗)

𝐾𝑆+𝐶𝑆,(𝑖,𝑗)
∙ 𝑋𝑘.   (1) 

 

In this formula, CS,(i,j) [fg/fL] is the glucose concentration of 

the environmental unit in which the microbial cell is situated, 

vk,(i,j) [fg/min] is the glucose uptake of cell k, vk,max [fg/min] is 

the maximum glucose uptake rate, KS [fg/fL] the Monod half-

saturation constant, µk,max [min-1] the maximum specific 

cellular growth rate, YX/S [fgDW/fg] the cellular yield 

coefficient of biomass on glucose, and Xk [fgDW] the mass of 

cell k. The cellular growth and maintenance behaviour are 

implemented as an exponential growth law, containing 

contributions of the Monod-type glucose uptake, and biomass 

degradation according to the Herbert model (Herbert 1958): 

 
d𝑋𝑘

d𝑡
= 𝜇𝑘 ∙ 𝑋𝑘 = 𝑣𝑘,(𝑖,𝑗) ∙ 𝑌𝑋/𝑆 − 𝑚𝑆 ∙ 𝑋𝑘 ∙ 𝑌𝑋/𝑆, (2) 

 

with µk [min-1] the specific cellular growth rate of microbial 

cell k, and mS [fg/(fgDW·min)] the specific maintenance 

coefficient. 

A microbial cell starves when its maintenance requirement is 

not met and, consequently, its specific growth rate is negative. 

In a starving cell, the DNA replication and cell division 

processes stop progressing. These processes are modelled by 

means of an adapted version of the Donachie model 

(Donachie 1968), elaborated in Tack et al. (2015). In this 

model, the DNA replication (C-phase) and chromosomal 

segregation (D-phase) take a fixed period of time as a function 

of the specific cellular growth rate: 

 

𝐶 + 𝐷 = 3.50 ∙ 𝜇𝑘
−0.658   for   𝜇𝑘 < 0.011 min,          (3a) 

𝐶 + 𝐷 = 67.92 min   for   𝜇𝑘 ≥ 0.011 min                (3b). 

 

This equation has been derived as a fit on data of Helmstetter 

(1996) and Michelsen et al. (2003). 

According to Donachie (1968), DNA replication cycles are 

initiated at a critical ratio Xc [fgDW] of the cell mass to the 

number of ongoing DNA replications: 

 
𝑋𝑖

𝑛𝑖
= 𝑋𝑐 ⇒ 𝑋𝑖 = 𝑋𝑐 ∙ 𝑛𝑖 = 𝑋𝑐 ∙ 2𝑗  with  𝑗 = 0,1,2, …     (4) 

 

For exponentially growing cultures, the critical initiation ratio 

can be derived from the mean cell mass at division 𝑋𝐷
m 

[fgDW] (Dens et al. 2005): 

 

𝑋𝐷
m(𝜇max

m ) = 𝑋𝑐 ∙ exp(𝜇max
m ∙ (𝐶 + 𝐷)).                         (5) 

 

Although Donachie (1968) postulated that the critical ratio 

was a constant, Wold et al. (1994) observed a linear decrease 

of Xc as a function of the specific cellular growth rate: 

 

𝑋𝑐 = 𝐴 − 𝐵 ∙ 𝜇max
m .                                                          (6) 

 

The mathematical constants A and B can be estimated from 

experimental data of Volkmer and Heinemann (2011) on the 

mean cell mass at division as a function of the specific  growth 

rate, after the substitution of the critical initiation ratio in 

Equation (5) by the expression in Equation (6).  

Finally, cells avoid spatial overlap by shoving over the surface 

and forming layers on top of each other, as explained in the 

next section. 

All parameter values in the previous equations can be found 

in Tack et al. (2015a). 
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Porting the Model to TransProg 
 

The TransProg library is not by itself a simulation engine 

dedicated to bacteria. It is rather a set of facilities 

(multiplatform and written in C language) for a programmer 

to harness the full potential of modern general-purpose 

computers. However, it was designed with individual-based 

simulations in mind, and consequently makes use of multiple 

cores and processors (CPU) as well as graphical processing 

units (GPU) for both rendering and computing. 

The simulation of the aforementioned MICRODIMS model 

involves many bacterial individuals and a food substrate 

containing glucose as the carbon nutrient source. Because the 

simulation of glucose diffusion through the substrate implies 

computing Fick's second law with a discrete Laplacian on a 

spatial grid, these computations are identical in each spatial 

cell and use a regular pattern; therefore they are suitable to 

GPU computing (with the Nvidia Cuda toolkit). On the other 

hand, each individual takes its own decisions (consume 

glucose, grow, start a new DNA replication cycle, divide, 

separate from neighbours… ); CPUs can easily deal with this 

kind of irregular computations and we dedicate all of them in 

the computer to the behaviour of the bacteria. The workloads 

on these CPUs are dynamically balanced according to their 

cache memory hierarchy in order to preserve data locality and 

then maximise computing efficiency. For the same purpose, 

alignment, cache blocking, and vectorisation techniques, as 

summarised in Jeffers and Reinders (2013), are used where 

suitable. 

In this model, bacteria stay on the surface of the food 

substrate, thus the only interface between these two distinct 

computations is the top plane of the substrate. Bacteria get to 

know the local concentration of glucose (computed on the 

GPU) by reading a bidimensional spatial grid describing local 

glucose concentrations in this plane. In a similar way, they 

express (on the CPUs) their local glucose consumption in 

another bidimensional spatial grid that will be provided to the 

substrate to be considered in the next diffusion computation. 

This is a synchronous approach in which, at each time step, 

every computation refers to a previous immutable global state 

to produce the next one. Because, on a hardware point of view, 

GPU and CPU computations are asynchronous, they can run 

simultaneously. For this opportunity to be fully exploited, the 

back and forth data transfer of the two previous bidimensional 

spatial grids must also overlap with the computations; this is 

achieved with a triple-buffer scheme as described in Hrabcak 

and Masserann (2012). 

All the care taken to optimise the computer efficiency enables 

us to address larger simulations than those run with the 

original version of MICRODIMS. If the number of simulated 

bacteria increases, the thickness of the food substrate should 

also be considered in the simulation. For this purpose, a three-

dimensional grid is used for the discrete Laplacian 

computation; it is solved (on the GPU) by Jacobi iterations 

around the backward Euler method (or alternatively Crank-

Nicolson). The top layer, which is actually the only layer 

accessible to the bacteria, is fine grained and has the same 

thickness as its horizontal grid step. As layers stand deeper, 

they can get coarser without influencing the bacteria that 

much. Hence, the diffusion equations are adapted to a 

geometric progression of the layer thickness, as illustrated in 

Figure 1. This three-dimensional cut view is an informal 

example that shows a bacterial colony standing on top of a 

multi-layered substrate. The red to blue gradient depicts the 

glucose concentration from its initial value to zero (totally 

consumed). The discrete steps of this colour gradient 

highlights the various thicknesses amongst the substrate 

layers. The food substrate acts as a thick glucose buffer 

without using too many layers that would harm computing 

efficiency. However, a thick substrate is likely to facilitate the 

bacterial access to nutrient since glucose does not only diffuse 

from beside, where it is already partially consumed by other 

bacteria, but also from below, where there is no consumption. 

In these conditions, bacterial growth is sped up (glucose is the 

only limiting factor in this model), and mechanical repulsion 

between the cells in a monolayer is not fast enough to separate 

individuals.  

 

 
 

Therefore, we introduced a stacking algorithm for the bacteria 

that produces multi-layered colony shapes as visible on 

Figure 1; it simply depends on their local density. As 

placement at a stacking level relies on a discrete spatial grid 

(to ease inter-individual detection for neighbour repulsions), 

each spatial cell keeps track of its remaining space. When a 

bacterium does not fit in a full spatial cell, it is then placed in 

the spatial cell on the above stacking level. Although some 

bacteria appear on top of some others, they all still interact 

with the substrate through its top layer. The main goal of this 

stacking algorithm is not to make the simulated colony look 

like a real one but it prevents a computational overload of the 

mechanical repulsion between bacteria. Actually, these 

repulsions are computed independently at each stacking level, 

then, as the density is contained, each bacteria has only a few 

neighbours to consider during the repulsion. 

 

RESULTS 
 

The aim of the experiments described here is to investigate 

branched colony shapes, as observed in Fujikawa and 

Matsushita (1989) and simulated by Ginovart et al. (2002b) 

and Tack et al. (2015a). Although the main model parameters 

directly come from Tack et al. (2015a), a peculiar care was 

taken when choosing some of them in order to achieve a 

satisfying trade-off between numerical stability and 

simulation duration. We retained 4 μm as horizontal grid step 

for the substrate and 0.1 min for the time step. It was checked 

that a factor 2 in the geometric progression of the thickness of 

the substrate layers gave results similar to those obtained with 

regular layers. We also checked whether the application of the 

backward Euler method with the selected time step to simulate 

glucose diffusion was similar to using the Crank-Nicolson 

method with a much smaller time step respecting the Courant-

 

Figure 1: Cut View Under a Colony of Bacteria  
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Friedrichs-Lewy (CFL) constraint. The substrate is a square 

with a side dimension of 4096 μm; its thickness changes over 

the various experiments. Its initial glucose concentration is 

0.1 g/L; it is maintained constant at the square boundaries. 

The usual glucose diffusivity inside this substrate is 

6.7925∙10-10 m2/s, but a tenfold lower value has been used in 

some simulations. These experiments were run on a dual Intel 

E5-2697 computer (24 cores, 48 threads) with a Nvidia Titan 

GPU. 

Figure 2 contains some views of the patterns obtained when 

running such simulations with various conditions of substrate 

thickness and glucose diffusivity. Figure 2-a1 shows the 

whole 4096 μm wide substrate, while Figures 2-a2 to 2-g give 

a closer view (Figures 2-a1 and 2-a2 both depict the same 

experiment in the exact same state). The simulation 

experiments are stopped before the colony (1.5 mm diameter) 

gets near to the constant borders (4 mm wide). The red to blue 

gradient depicts the glucose concentration varying from its 

initial value to zero. 

In Figures 2-a1/a2 to 2-d, the same tenfold lower diffusivity 

is used, but the substrate thickness is varied from 4 μm to 

60 μm. Despite the fact that very sharp branched patterns 

resembling a diffusion-limited aggregation pattern appear 

quite easily on a very thin substrate – as in Tack et al. (2015a) 

– they get smoother and involve more bacteria on a thicker 

one. Figure 2-a1/a2 contains 2∙105 bacteria (97% starving 

after 34 simulated days) and took 57 minutes to obtain 

(nutrient depletion implies slow growth rate), while 

Figure 2-d contains 1∙106 bacteria (92% starving after 9 

simulated days) and took 27 minutes to obtain. 

Figures 2-e and 2-f show the effect of a substrate with a usual 

diffusivity value and a thickness of respectively 4 μm and 

12 μm. It is clear that when the diffusivity rises, branched 

patterns are much more difficult to obtain even with larger 

colonies: they hardly start to appear with 3.2∙106 bacteria 

forming a 2 mm wide colony on Figure 2-f. 

For all of these simulations, the main part of the colony 

contains starving (dark) bacteria; the colony only continues 

growing at its border (light bacteria). This makes the branches 

appear where the colony border becomes irregular. Actually, 

when some bacteria are accidentally placed slightly apart from 

the colony due to inter-individual repulsions, they get an 

easier access to glucose, thus they grow faster than the other 

cells which are enclosed into the colony. Consequently, they 

are likely to produce an offspring which would stand even 

farther from the colony center, and this self-maintained 

process goes on, leading to branches. 

In Figure 2-g, the same settings are used as in Figure 2-f 

except that some irregularities are introduced in the glucose 

diffusivity by placing some 64 μm wide random plots with a 

tenfold lower value. Our intent was to alter the regular border 

of the colony in order to induce some early branch starts. The 

obtained Figure 2-g shows that when branches actually start, 

they tend to persist because the glucose depletion between 

them prevents the cells at the colony border from growing 

towards this gap. 

 

 

 
 

DISCUSSION 
 

Optimising the computing efficiency of the simulation was an 

important step in this work. While several days where 

necessary in Tack et al. (2015a) to produce a 165 μm wide 

pattern involving around ten thousand bacteria, we now spend 

several dozens of minutes to a few hours to obtain colonies of 

many millions bacteria forming millimetre scale patterns. This 

enabled us to try and compare various sets of parameters in a 

decent time and to extend the simulation in the third 

dimension. 

Actually, although it has been shown in Tack et al. (2015a) 

that nutrient depletion has a significant influence on the 

formation of branched colony shapes, this new version of the 

simulation helped to investigate this hypothesis further. These 

new results highlight that both the thickness of the substrate 

 

Figure 2: Colonies of Bacteria Labelled with their Diameter, 

the Substrate Thickness and Glucose Diffusivity 
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and the diffusivity of glucose have a decisive impact on the 

ability to obtain such patterns. With no more new hypothesis 

than glucose depletion, it seems that millimetre scale 

branched colony shapes cannot be obtained with the usual 

diffusivity in a thick substrate. (This would probably require 

a much larger scale). 

An alteration of the substrate with lower diffusivity plots was 

intended to reflect its natural heterogeneity. This led to early 

branch patterns on a thin substrate, but it is presumed that it 

would not be sufficient on a thick one. A new hypothesis to 

explain these patterns at the millimetre scale would be to 

consider the influence of oxygen diffusion in the colony. The 

inclusion of information from phenotypic phase plane 

analysis (Edwards et al. 2001) would enable the modelling of 

the whole spectrum from aerobic respiration to anaerobic 

fermentation, as described in a forthcoming publication (Tack 

et al. 2015b). 

From a more technical point of view, we realised that the 

computing time was mainly spent to the calculation of the 

bacterial behaviours on the CPUs, while the GPU stays idle 

once the substrate is updated. It should be possible to assign 

the straightforward parts of these behaviours (consumption 

and growth) to the GPU and only use the CPUs for the 

division and spatial repulsion of the bacterial cells. 

 

CONCLUSIONS 
 

The previously implemented MICRODIMS individual-based 

model, dedicated to bacteria colony simulations, was 

rewritten on top of the TransProg library in order to maximise 

the computing efficiency. This speedup enables us to run 

larger simulations (several millions of individuals) and to 

extend the model in the third spatial dimension. 

This new simulator helped investigate further the formation of 

branched colony shapes in relation with the role of the 

substrate in nutrient depletion. This led towards a new 

hypothesis implying both aerobic respiration and anaerobic 

fermentation. 

Future efforts will both tend to further investigate this new 

hypothesis and to increase the GPU workload in order to raise 

the global computing efficiency. 
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NOTE 
 

This paper is the result of a collaboration between the 

BioTeC+ research group and the European Center for Virtual 

Reality (CERV). In fact, this collaboration started at the 

previous FOODSIM conference in Brest, where I. Tack and 

G. Desmeulles discovered common research interests. At that 

time, both researchers were involved in projects on the 

simulation of microbial colony dynamics. During a first 

research visit of I. Tack at CERV, G. Desmeulles introduced 

him to F. Harrouet to reimplement the BioTeC+ 

MICRODIMS model with the TransProg library. The idea to 

write a common paper came at a second meeting at BioTeC+ 

in Ghent. 
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